Browse > Article
http://dx.doi.org/10.7465/jkdi.2016.27.5.1389

ML estimation using Poisson HGLM approach in semi-parametric frailty models  

Ha, Il Do (Department of Statistics, Pukyong National University)
Publication Information
Journal of the Korean Data and Information Science Society / v.27, no.5, 2016 , pp. 1389-1397 More about this Journal
Abstract
Semi-parametric frailty model with nonparametric baseline hazards has been widely used for the analyses of clustered survival-time data. The frailty models can be fitted via an auxiliary Poisson hierarchical generalized linear model (HGLM). For the inferences of the frailty model marginal likelihood, which gives MLE, is often used. The marginal likelihood is usually obtained by integrating out random effects, but it often requires an intractable integration. In this paper, we propose to obtain the MLE via Laplace approximation using a Poisson HGLM approach for semi-parametric frailty model. The proposed HGLM approach uses hierarchical-likelihood (h-likelihood), which avoids integration itself. The proposed method is illustrated using a numerical study.
Keywords
H-likelihood; Laplace approximation; marginal likelihood; Poisson HGLMs; semi-parametric frailty models;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Barndorff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic techniques for use in Statistics, Chapman and Hall, New York.
2 Breslow, N. E. (1972). Discussion of professor Cox's paper. Journal of the Royal Statistical Society B, 34, 216-217.
3 Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society B, 74, 187-220.
4 Donohue, M. and Xu, R. (2013). Phmm: Proportional hazards mixed-effects model, http://CRAN.R-project.org/package=phmm.Rpackageversion0.7-5.
5 Ha, I. D. and Cho, G.-H. (2015). Variable selection in Poisson HGLMs using h-likelihood. Journal of the Korean Data & Information Science Society, 26, 1513-1521.   DOI
6 Ha, I. D. and Lee, Y. (2005). Comparison of hierarchical likelihood versus orthodox best linear unbiased predictor approaches for frailty models. Biometrika, 92, 717-723.   DOI
7 Ha, I. D., Lee, Y. and Song, J. K. (2001). Hierarchical likelihood approach for frailty models. Biometrika, 88, 233-243.   DOI
8 Ha, I. D. and Noh, M. (2013). A visualizing method for investigating individual frailties using frailtyHL R-package. Journal of the Korean Data & Information Science Society, 24, 931-940.   DOI
9 Ha, I. D., Noh, M. and Lee, Y. (2012). frailtyHL: A package for fitting frailty models with h-likelihood. R Journal, 4, 307-320.
10 McGilchrist, C. A. and Aisbett, C. W. (1991). Regression with frailty in survival analysis. Biometrics, 47, 461-466.   DOI
11 Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society B, 58, 619-678.
12 Lee, Y and Nelder, J. A. (2001). Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika, 88, 987-1006.   DOI
13 Whitehead, J. (1980). Fitting Cox's regression model to survival data using GLIM. Applied Statistics, 29, 268-275.   DOI
14 Lee, Y., Nelder, J. A. and Pawitan, Y. (2006). Generalised linear models with random effects: Unified analysis via h-likelihood, Chapman and Hall, London.
15 Ma, R., Krewski, D. and Burnett, R. T. (2003). Random effects Cox models: A Poisson modelling approach. Biometrika, 90, 157-169.   DOI
16 SAS Institute Inc. (2014). SAS/STAT 13.2 users guide: The NLMIXED procedure, SAS Institute Inc., Cary, NC, USA.