DOI QR코드

DOI QR Code

ML estimation using Poisson HGLM approach in semi-parametric frailty models

  • Ha, Il Do (Department of Statistics, Pukyong National University)
  • Received : 2016.06.28
  • Accepted : 2016.07.18
  • Published : 2016.09.30

Abstract

Semi-parametric frailty model with nonparametric baseline hazards has been widely used for the analyses of clustered survival-time data. The frailty models can be fitted via an auxiliary Poisson hierarchical generalized linear model (HGLM). For the inferences of the frailty model marginal likelihood, which gives MLE, is often used. The marginal likelihood is usually obtained by integrating out random effects, but it often requires an intractable integration. In this paper, we propose to obtain the MLE via Laplace approximation using a Poisson HGLM approach for semi-parametric frailty model. The proposed HGLM approach uses hierarchical-likelihood (h-likelihood), which avoids integration itself. The proposed method is illustrated using a numerical study.

Keywords

References

  1. Barndorff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic techniques for use in Statistics, Chapman and Hall, New York.
  2. Breslow, N. E. (1972). Discussion of professor Cox's paper. Journal of the Royal Statistical Society B, 34, 216-217.
  3. Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society B, 74, 187-220.
  4. Donohue, M. and Xu, R. (2013). Phmm: Proportional hazards mixed-effects model, http://CRAN.R-project.org/package=phmm.Rpackageversion0.7-5.
  5. Ha, I. D. and Cho, G.-H. (2015). Variable selection in Poisson HGLMs using h-likelihood. Journal of the Korean Data & Information Science Society, 26, 1513-1521. https://doi.org/10.7465/jkdi.2015.26.6.1513
  6. Ha, I. D. and Lee, Y. (2005). Comparison of hierarchical likelihood versus orthodox best linear unbiased predictor approaches for frailty models. Biometrika, 92, 717-723. https://doi.org/10.1093/biomet/92.3.717
  7. Ha, I. D., Lee, Y. and Song, J. K. (2001). Hierarchical likelihood approach for frailty models. Biometrika, 88, 233-243. https://doi.org/10.1093/biomet/88.1.233
  8. Ha, I. D. and Noh, M. (2013). A visualizing method for investigating individual frailties using frailtyHL R-package. Journal of the Korean Data & Information Science Society, 24, 931-940. https://doi.org/10.7465/jkdi.2013.24.4.931
  9. Ha, I. D., Noh, M. and Lee, Y. (2012). frailtyHL: A package for fitting frailty models with h-likelihood. R Journal, 4, 307-320.
  10. McGilchrist, C. A. and Aisbett, C. W. (1991). Regression with frailty in survival analysis. Biometrics, 47, 461-466. https://doi.org/10.2307/2532138
  11. Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society B, 58, 619-678.
  12. Lee, Y and Nelder, J. A. (2001). Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika, 88, 987-1006. https://doi.org/10.1093/biomet/88.4.987
  13. Lee, Y., Nelder, J. A. and Pawitan, Y. (2006). Generalised linear models with random effects: Unified analysis via h-likelihood, Chapman and Hall, London.
  14. Ma, R., Krewski, D. and Burnett, R. T. (2003). Random effects Cox models: A Poisson modelling approach. Biometrika, 90, 157-169. https://doi.org/10.1093/biomet/90.1.157
  15. SAS Institute Inc. (2014). SAS/STAT 13.2 users guide: The NLMIXED procedure, SAS Institute Inc., Cary, NC, USA.
  16. Whitehead, J. (1980). Fitting Cox's regression model to survival data using GLIM. Applied Statistics, 29, 268-275. https://doi.org/10.2307/2346901

Cited by

  1. 위암등록자료에 대한 프레일티 모형 적합 vol.29, pp.4, 2016, https://doi.org/10.7465/jkdi.2018.29.4.1037