• Title/Summary/Keyword: Parameter Extraction

Search Result 492, Processing Time 0.033 seconds

Optimization of Ultrasound-assisted Extraction of Phenolic Compounds from Salicornia herbacea Powder

  • Kim, Hui-Jeong;Lee, Jun-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.129-133
    • /
    • 2009
  • Salicornia herbacea is rich in natural minerals, dietary fibers, and potentially health-promoting phenolic compounds. In this paper, an experimental design was applied for the optimization of the ultrasound-assisted extraction of phenolic compounds from lyophilized Salicornia herbacea powder. The experiments were conducted in accordance with a five-level, three-variable central composite rotatable design (CCRD), and the effects of solvent concentration, extraction time, and extraction temperature were evaluated via response surface methodology (RSM). The optimal extraction conditions were as follows: ethanol concentration, 76.80%; extraction time, 20 min; and extraction temperature, $33.21^{\circ}C$; and the solvent concentration was the most significant parameter in this process, under which the predicted total phenolic content was 49.91 mg GAE/g sample.

Bias and Gate-Length Dependent Data Extraction of Substrate Circuit Parameters for Deep Submicron MOSFETs (Deep Submicron MOSFET 기판회로 파라미터의 바이어스 및 게이트 길이 종속 데이터 추출)

  • Lee Yongtaek;Choi Munsung;Ku Janam;Lee Seonghearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.27-34
    • /
    • 2004
  • The study on the RF substrate circuit is necessary to model RF output characteristics of deep submicron MOSFETs below 0.2$\mum$ gate length that have bun commercialized by the recent development of Si submicron process. In this paper, direct extraction methods are developed to apply for a simple substrate resistance model as well as another substrate model with connecting resistance and capacitance in parallel. Using these extraction methods, better agreement with measured Y22-parameter up to 30 GHz is achieved for 0.15$\mum$ CMOS device by using the parallel RC substrate model rather than the simple resistance one, demonstrating the RF accuracy of the parallel model and extraction technique. Using this model, bias and gate length dependent curves of substrate parameters in the RF region are obtained by increasing drain voltage of 0 to 1.2V at deep submicron devices with various gate lengths of 0.11 to 0.5㎛ These new extraction data will greatly contribute to developing a scalable RF nonlinear substrate model.

Applicability Comparison of Transmission Line Parameter Extraction Methods for Busbar Distribution Systems

  • Hasirci, Zeynep;Cavdar, Ismail Hakki;Ozturk, Mehmet
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.586-593
    • /
    • 2017
  • Modeling busbar distribution system as a transmission line is an important subject of power line communication in the smart grid concept. This requires extraction of busbar RLGC parameters, accurately. In this study, a comparison is made between conventional and modified method for the aspect of optimum RLGC parameters extraction in the 1 MHz to 50 MHz frequency band. The usefulness of these methods is shown both in time and frequency-domain analysis. The frequency-domain analyzes show that the inherent power of modified method can eliminate the errors especially due to the discontinuities arise in conventional method. This makes the modeling approach of modified method more advantageous for the busbars due to its robustness against disturbances in the S-parameters measurements which cannot be eliminated with the calibration procedure. On the other hand, time-domain simulations show that the transmission line representation of the modified method is closer to physical reality by handling causality issues.

Estimation of Camera Motion Parameter using Invariant Feature Models (불변 특징모델을 이용한 카메라 동작인수 측정)

  • Cha, Jeong-Hee;Lee, Keun-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.191-201
    • /
    • 2005
  • In this paper, we propose a method to calculate camera motion parameter, which is based on efficient invariant features irrelevant to the camera veiwpoint. As feature information in previous research is variant to camera viewpoint. information content is increased, therefore, extraction of accurate features is difficult. LM(Levenberg-Marquardt) method for camera extrinsic parameter converges on the goat value exactly, but it has also drawback to take long time because of minimization process by small step size. Therefore, in this paper, we propose the extracting method of invariant features to camera viewpoint and two-stage calculation method of camera motion parameter which enhances accuracy and convergent degree by using camera motion parameter by 2D homography to the initial value of LM method. The proposed method are composed of features extraction stage, matching stage and calculation stage of motion parameter. In the experiments, we compare and analyse the proposed method with existing methods by using various indoor images to demonstrate the superiority of the proposed algorithm.

  • PDF

A study on process parameter extraction and device characteristics of nMOSFET using DTC method (DTC방법을 사용한 nMOSFET의 공정파라메터 추출 및 소자특성에 관한 연구)

  • 이철인;장의구
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.799-805
    • /
    • 1996
  • In short channel MOSFET, it is very important to establish optimal process conditions because of variation of device characteristics due to the process parameters. In this paper, we used process simulator and device characteristics caused by process parameter variation. From this simulation, it has been ' derived to the dependence relations between process parameters and device characteristics. The experimental result of fabricated short channel device according to the optimal process parameters demonstrate good device characteristics.

  • PDF

Thermodynamic Analysis of the Extraction Process and the Cold Energy Utilization of LNG (LNG추출과정과 냉열이용의 열역학적 해석)

  • Lee, G.S.;Chang, Y.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.120-131
    • /
    • 1995
  • Thermodynamic analysis of extraction process from the constant pressure LNG(Liquefied Natural Gas) vessel was performed in this study. LNG was assumed as a binary mixture of 90% methane and 10% ethane by mole fraction. The thermodynamic properties such as temperature, composition, specific volume and the amount of cold energy were predicted during extraction process. Pressure as a parameter ranges from 101.3kPa to 2000kPa. The result shows the peculiar phenomena for the LNG as a mixture. Both vapor and liquid extraction processes were investigated by a computer model. The property changes are negligible in the liquid extraction process. For the vapor extraction process, the temperature in the vessel increases rapidly and the extracted composition of methane decreases rapidly near the end of extracting process. Specific volume of vapor has the maximum and that of liquid has the minimum during the process. When pressure is increased, specific volume of vapor decreases and that of liquid increases. It was found that specific volume of vapor phase had a major effect on the heat absorption at constant pressure during vapor extraction process. If the pressure of the vessel increases, the total cold energy which can be utilized from LNG decreased.

  • PDF

Colored Object Extraction using Fuzzy Neural Network (퍼지 신경회로망을 이용한 칼라 물체 추출)

  • Kim, Yong-Soo;Chung, Seung-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.226-231
    • /
    • 2007
  • This paper presents a method of colored object extraction from an image using the fuzzy neural network. Fuzzy neural network divides an image into two clusters. It extracts the prototypes of Cb and Cr of object and background by controlling the vigilance parameter. The proposed method extracted object regardless of the position, the size, and the intensity of object. We compared the performance of the proposed method with that of the method of using subjective threshold value. And, we compared the performance of the proposed method with that of the method of using subjective threshold value by using several images with added noises.

Accuracy Analysis of Substrate Model for Multi-Finger RF MOSFETs Using a New Parameter Extraction Method (새로운 파라미터 추출 방법을 사용한 Multi-Finger RF MOSFET의 기판 모델 정확도 비교)

  • Choi, Min-Kwon;Kim, Ju-Young;Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.2
    • /
    • pp.9-14
    • /
    • 2012
  • In this study, multi-finger RF MOSFET substrate parameters are accurately extracted by using S-parameters measured from common source-bulk and common source-gate test structures. Using this extraction method, the accuracy of an asymmetrical model with three substrate resistances is verified by observing better agreement with measured Y-parameters than a simple model with a single substrate resistance. The modeled S-parameters of the asymmetrical model also show excellent agreement with measured ones up to 20GHz.

Extraction of Extrinsic Circuit Parameters of HEMT by Minimizing Residual Errors (잔차 오차 최소에 의한 HEMT의 외인성 파라미터 추출)

  • Jeon, Man-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.853-859
    • /
    • 2014
  • This study presents a technique for extracting all the extrinsic parameters of HEMTs by minimizing the residual errors between a pinch-off cold-FET's gate and drain pad de-embedded Z-parameters and its modeled Z-parameters calculated by the cold-FET's remaining parameters. The presented technique allows us to successfully extract the remaining extrinsic parameter values as well as the gate and drain pad capacitance value without the additional fabrications of the gate and drain dummy pad.