• Title/Summary/Keyword: Parallel Resource Control

Search Result 18, Processing Time 0.026 seconds

Study of High-Speed NGN Resource Control Schemes (NGN 자원제어 스킴의 고속화 방안에 관한 연구)

  • Cha, Young-Wook;Han, Tae-Man;Jeong, You-Hyeon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.383-392
    • /
    • 2009
  • Next generation network (NGN) is a packet-based converged network to support session and non-session services in QoS-enabled broadband transport network. QoS based resource control must be defined to support differentiated services for various network users in NGN. This paper defined parallel control schemes for NGN resource control interfaces to minimize session and resource control delays. We simulated the existing and proposed NGN control schemes to measure and analyze control delays and completion ratios. By arrival rate of 120 in two-phase resource control, we checked out that completion ratios of sequential and parallel schemes achieved 100%, and the control delay of parallel scheme was improved by about 21.5% compared to that of sequential scheme.

A Real-time Resource Allocation Algorithm for Minimizing the Completion Time of Workflow (워크플로우 완료시간 최소화를 위한 실시간 자원할당 알고리즘)

  • Yoon, Sang-Hum;Shin, Yong-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • This paper proposes a real-time resource allocation algorithm for minimizing the completion time of overall workflow process. The jobs in a workflow process are interrelated through the precedence graph including Sequence, AND, OR and Loop control structure. A resource should be allocated for the processing of each job, and the required processing time of the job can be varied by the resource allocation decision. Each resource has several inherent restrictions such as the functional, geographical, positional and other operational characteristics. The algorithm suggested in this paper selects an effective resource for each job by considering the precedence constraint and the resource characteristics such as processing time and the inherent restrictions. To investigate the performance of the proposed algorithm, several numerical tests are performed for four different workflow graphs including standard, parallel and two series-parallel structures. In the tests, the solutions by the proposed algorithm are compared with random and optimal solutions which are obtained by a random selection rule and a full enumeration method respectively.

Design and Implementation of parallel Media server in current system environment (기존 시스템 환경에서의 병렬 미디어 서버의 설계 및 구현)

  • 김경훈;류재상;김서균;남지승
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.97-100
    • /
    • 2000
  • As network resources have become faster and demands for multimedia service through network have increased, the demand for Media server system has increased. These kinds of media server solve their bottle neck problem of internal storage device by using parallel system which takes advantage of fast network resource. Many vendors have suggested each of their media server system to solve these problem radically, but most of them require major modification of infra component and additional drawback has added. For example, storage mechanism for specific media requires new file system which is totally different from traditional one, and algorithm for enhancing performance may not suit for traditional operating system environment. In this paper, we designed a parallel media server based on web interface of traditional system and implemented a program for media server. Implemented server system performs parallel processing through web interface without any modification of traditional system, and controls which is related to merging load by distributed data is charged only to client and control server and consequently load of storage server can be minimized. And also, data transfer protocol for streaming media includes Retransfer algorithm and client Admission control policy relevant to performance of whole system.

  • PDF

Reducing False Alarms in Schizophrenic Parallel Synchronizer Detection for Esterel (Esterel에서 동기장치 중복사용 문제 검출시 과잉 경보 줄이기)

  • Yun, Jeong-Han;Kim, Chul-Joo;Kim, Seong-Gun;Han, Tai-Sook
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.8
    • /
    • pp.647-652
    • /
    • 2010
  • Esterel is an imperative synchronous language well-adapted to control-intensive systems. When an Esterel program is translated to a circuit, the synchronizer of a parallel statement may be executed more than once in a clock; the synchronizer is called schizophrenic. Existing compilers cure the problems of schizophrenic parallel synchronizers using logic duplications. This paper proposes the conditions under which a synchronizer causes no problem in circuits when it is executed more than once in a clock. In addition we design a detection algorithm based on those conditions. Our algorithm detects schizophrenic parallel synchronizers that have to be duplicated in Esterel source codes so that compilers can save the size of synthesized circuits

Performance evaluations of discrete event system using Petri Nets (페트리 네트를 이용한 이산 사건 시스템의 성능 분석)

  • 최정환;고인선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1241-1244
    • /
    • 1996
  • This paper present a performance evaluation method for Timed Place Petri Nets modeled by Live-and-Bounded Circuits (LB-circuits) through a bottom-up approach. The method can handle the case for the nets having common resources(CR). The target system is divided into the sub-systems by disconnecting the common Transition-Transition-Path(TTP) or Place-Place-Path (PPP) between sub-systems. The common PPP pattern is classified into Parallel Common Resource (PCR) and Sequential Common Resource (SCR) in detail for handling common resources. We evaluate the performance of each divided sub-system, and calculate the sub-systems affect on the performance of the whole system. The facts are generalized as a theorem. The developed theorem are applied into the performance evaluation of an automated assembly system shown in an example. All the results are verified by simulation.

  • PDF

Wavelength and Waveband Assignment for Ring Networks Based on Parallel Multi-granularity Hierarchical OADMs

  • Qi, Yongmin;Su, Yikai;Jin, Yaohui;Hu, Weisheng;Zhu, Yi;Zhang, Yi
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.631-637
    • /
    • 2006
  • In this paper we study the optimization issues of ring networks employing novel parallel multi-granularity hierarchical optical add-drop multiplexers (OADMs). In particular, we attempt to minimize the number of control elements for the off-line case. We present an integer linear programming formulation to obtain the lower bound in optimization, and propose an efficient heuristic algorithm called global bandwidth resource assignment that is suitable for the design of large-scale OADM networks.

  • PDF

Analyzing Fine-Grained Resource Utilization for Efficient GPU Workload Allocation (GPU 작업 배치의 효율화를 위한 자원 이용률 상세 분석)

  • Park, Yunjoo;Shin, Donghee;Cho, Kyungwoon;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.111-116
    • /
    • 2019
  • Recently, GPU expands application domains from graphic processing to various kinds of parallel workloads. However, current GPU systems focus on the maximization of each workload's parallelism through simplified control rather than considering various workload characteristics. This paper classifies the resource usage characteristics of GPU workloads into computing-bound, memory-bound, and dependency-latency-bound, and quantifies the fine-grained bottleneck for efficient workload allocation. For example, we identify the exact bottleneck resources such as single function unit, double function unit, or special function unit even for the same computing-bound workloads. Our analysis implies that workloads can be allocated together if fine-grained bottleneck resources are different even for the same computing-bound workloads, which can eventually contribute to efficient workload allocation in GPU.

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

Implementation of Multi-Motor Controller Based on a Single Microcontroller (단일 마이크로컨트롤러 기반 다중 모터제어기 구현)

  • Kwon, Jae-Min;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.237-243
    • /
    • 2015
  • In this paper, we consider a cascaded type of control architecture for a multi motor-based feedback control system and propose an ADC (Analog to Digital Converter) resource allocation method to efficiently utilize the limited ADC resources. The purpose of the resource allocation method is to minimize both the motor position measurement error and the d-q current measurement error. The cascaded type of control architecture is applied in parallel to each motor to independently control the speed of a motor in the multi motor control system. All the control algorithms are implemented by software using a single microcontroller without using additional microcontrollers. It is illustrated by experiments that the speed and the torque of each motor are controlled precisely by the proposed control architecture with the efficient ADC allocation method.

Spectrum Leasing and Cooperative Resource Allocation in Cognitive OFDMA Networks

  • Tao, Meixia;Liu, Yuan
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2013
  • This paper considers a cooperative orthogonal frequency division multiple access (OFDMA)-based cognitive radio network where the primary system leases some of its subchannels to the secondary system for a fraction of time in exchange for the secondary users (SUs) assisting the transmission of primary users (PUs) as relays. Our aim is to determine the cooperation strategies among the primary and secondary systems so as to maximize the sum-rate of SUs while maintaining quality-of-service (QoS) requirements of PUs. We formulate a joint optimization problem of PU transmission mode selection, SU (or relay) selection, subcarrier assignment, power control, and time allocation. By applying dual method, this mixed integer programming problem is decomposed into parallel per-subcarrier subproblems, with each determining the cooperation strategy between one PU and one SU. We show that, on each leased subcarrier, the optimal strategy is to let a SU exclusively act as a relay or transmit for itself. This result is fundamentally different from the conventional spectrum leasing in single-channel systems where a SU must transmit a fraction of time for itself if it helps the PU's transmission. We then propose a subgradient-based algorithm to find the asymptotically optimal solution to the primal problem in polynomial time. Simulation results demonstrate that the proposed algorithm can significantly enhance the network performance.