Browse > Article
http://dx.doi.org/10.12989/gae.2020.20.6.517

Modeling time-dependent behavior of hard sandstone using the DEM method  

Guo, Wen-Bin (Inner Mongolia Key Laboratory of Mining Pressure and Strata Control, Hulunbeir University)
Hu, Bo (Inner Mongolia Key Laboratory of Mining Pressure and Strata Control, Hulunbeir University)
Cheng, Jian-Long (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology)
Wang, Bei-Fang (State Key Laboratory of Water Resource Protection and Utilization in Coal Mining)
Publication Information
Geomechanics and Engineering / v.20, no.6, 2020 , pp. 517-525 More about this Journal
Abstract
The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.
Keywords
hard sandstone; creep simulation; particle flow code; parallel bond model; Burger's model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Amitrano, D. and Helmstetter, A. (2006), "Brittle creep, damage, and time to failure in rocks", J. Geophys. Res., 111(B11), B11201. https://doi.org/10.1029/2005JB004252.
2 Ashby, M.F. and Sammis, C.G. (1990), "The damage mechanics of brittle solids in compression", Pure Appl. Geophys., 133(3), 489-521. https://doi.org/10.1007/BF00878002.   DOI
3 Atkinson, B.K. (1984), "Subcritical crack growth in geological materials", J. Geophys. Res., 89(B6), 4077-4114. https://doi.org/10.1029/JB089iB06p04077.   DOI
4 Bahrani, N., Kaiser, P.K. and Valley, B. (2014), "Distinct element method simulation of an analogue for a highly interlocked, nonpersistently jointed rock mass", Int. J. Rock Mech. Min. Sci., 71,117-130. https://doi.org/10.1016/j.ijrmms.2014.07.005   DOI
5 Bhat, H.S., Sammis, C.G. and Rosakis, A.J. (2011), "The micromechanics of Westerly granite at large compressive loads", Pure Appl. Geophys., 168(12), 2181-2198. https://doi.org/10.1007/s00024-011-0271-9   DOI
6 Bikong, C., Hoxha, D. and Shao, J.F. (2015), "A micro-macro model for time-dependent behavior of clayey rocks due to anisotropic propagation of microcracks", Int. J. Plasticity, 69, 73-88. https://doi.org/10.1016/j.ijplas.2015.02.001.   DOI
7 Brantut, N., Heap, M.J., Meredith, P.G. and Baud, P. (2013), "Time-dependent cracking and brittle creep in crustal rocks: A review", J. Struct. Geol., 52, 17-43. https://doi.org/10.1016/j.jsg.2013.03.007.   DOI
8 Cai, M., Kaiser, P.K., Tasaka, Y., Maejima, T., Morioka, H. and Minami, M. (2004), "Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations", Int. J. Rock Mech. Min. Sci., 41(5), 833-847. https://doi.org/10.1016/j.ijrmms.2004. 02.001.   DOI
9 Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1980.30.3.331.   DOI
10 Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.   DOI
11 Damjanac, B. and Fairhurst, C. (2010), "Evidence for a long-term strength threshold in crystalline rock", Rock Mech. Rock Eng., 43(5), 513-531. https://doi.org/10.1007/s00603-010-0090-9   DOI
12 Gutierrez-Ch, J.G., Senent, S. and Jimenez, R. (2019), "Distinct Element Method Simulation of Creep Behaviour", Proceedings of the 53rd US Rock Mechanics/Geomechanics Symposium, New York, U.S.A. June.
13 Chen, W. and Konietzky, H. (2014), "Simulation of heterogeneity, creep, damage and lifetime for loaded brittle rocks", Tectonophysics, 633, 164-175. https://doi.org/10.1016/j.tecto.2014.06.033.   DOI
14 Itasca Consulting Group Inc. (2004), Particle Flow Code, Itasca Consulting Group Inc., Sudbury, Canada.
15 Koyama, T. and Jing, L. (2007), "Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks-a particle mechanics approach", Eng. Anal. Bound. Elem., 31(5), 458-472. https://doi.org/10.1016/j.enganabound.2006.11.009.   DOI
16 Lajtai, E.Z. and Bielus, LP. (1986), "Stress corrosion cracking of lac du bonnet granite in tension and compression", Rock Mech. Rock Eng., 19(2), 71-87. https://doi.org/10.1007/BF01042525.   DOI
17 Li, H., Yang, C.H., Ma, H.L., Shi, X.L., Zhang, H.N. and Dong, Z.K. (2020), "A 3D grain-based creep model (3D-GBCM) for simulating long-term mechanical characteristic of rock salt", J. Petrol. Sci. Eng., 185, 106672. https://doi.org/10.1016/j.petrol.2019.106672.   DOI
18 Liu, G. and Cai, M. (2018), "Modeling time-dependent failure of brittle rock using PFC grain-based model", Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, Washington, U.S.A., June.
19 Li, W., Han, Y., Wang, T. and Ma, J. (2017), "DEM micromechanical modeling and laboratory experiment on creep behavior of salt rock", J. Nat. Gas Sci. Eng., 46, 38-46. https://doi.org/10.1016/j.jngse.2017.07.013   DOI
20 Li, X. and Konietzky, H. (2014), "Time to failure prediction scheme for rocks", Rock Mech. Rock Eng., 47(4), 1493-1503. https://doi.org/10.1007/s00603-013-0447-y.   DOI
21 Malan, D.F. (2002), "Simulation of the time-dependent behavior of excavations in hard rock", Rock Mech. Rock Eng., 35(4), 225-254. https://doi.org/10.1007/s00603-002-0026-0.   DOI
22 Miura, K., Okui, Y. and Horii, H. (2003), "Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system", Mech. Mater., 35(3-6), 587-601. https://doi.org/10.1016/S0167-6636(02)00286-7.   DOI
23 Scholz, C.H. (1968), "The frequency-magnitude relation of micro fracturing in rock and its relation to earthquakes", Bull. Seismol. Soc. Amer., 58(1), 399-415.   DOI
24 Moghadam, N.S., Mirzabozorg, H. and Noorzad, A. (2013), "Modeling time-dependent behavior of gas caverns in rock salt considering creep, dilatancy and failure", Tunn. Undergr. Sp. Technol., 33, 171-185. https://doi.org/10.1016/j.tust.2012.10.001.   DOI
25 Mohanty, S. and Vandergrift, T. (2012), "Long term stability evaluation of an old underground gas storage cavern using unique numerical methods", Tunn. Undergr. Sp. Technol., 30, 145-154. https://doi.org/10.1016/j.tust.2012.02.015.   DOI
26 Potyondy, D.O. (2007), "Simulating stress corrosion with a bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 44(5), 677-691. https://doi.org/10.1016/j.ijrmms.2006.10.002.   DOI
27 Wang, M.Z. and Cai, M. (2020), "A grain-based time-to-failure creep model for brittle rocks", Comput. Geotech., 119, 103344. https://doi.org/10.1016/j.compgeo.2019.103344.   DOI
28 Shin, K., Okubo, S., Fukui, K. and Hashiba, K. (2005), "Variation in strength and creep life of six Japanese rocks", Int. J. Rock Mech. Min. Sci., 42(2), 251-260. https://doi.org/10.1016/j.ijrmms.2004.08.009.   DOI
29 Sone, H and Zoback, M.D. (2014), "Time-dependent deformation of shale gas reservoir rocks and its long-term effect on the in situ state of stress", Int. J. Rock Mech. Min. Sci., 69, 120-132. https://doi.org/10.1016/j.tust.2013.07.014.   DOI
30 Song, Z.Y., Konietzky, H. and Herbst, M. (2019), "Bondedparticle model-based simulation of artificial rock subjected to cyclic loading", Acta Geotechnica, 14(4), 955-971. https://doi.org/10.1007/s11440-018-0723-9.   DOI
31 Xue, Y.T, Mishra, B. and Gao, D. (2017), "Numerical and laboratory analysis of relaxation tests for determining timedependent properties of rock", Geotech. Geol. Eng., 35(2), 615-629. https://doi.org/10.1007/s10706-016-0129-0.   DOI
32 Wu, K. and Shao, Z.S. (2019a), "Visco-elastic analysis on the effect of flexible layer on mechanical behavior of tunnels", Int. J. Appl. Mech., 11(3), 1950027. https://doi.org/10.1142/S1758825119500273.   DOI
33 Wu, K. and Shao, Z.S. (2019b), "Study on the effect of flexible layer on support structures of tunnel excavated in viscoelastic rocks", J. Eng. Mech., 145(10), 04019077. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001657.   DOI
34 Wu, K., Shao, Z.S., Qin, S. and Li, B.X. (2020), "Determination of deformation mechanism and countermeasures in silty clay tunnel", J. Perform. Constr. Fac., 34(1), 04019095. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001381.   DOI
35 Sharifzadeh, M., Tarifard, A. and Moridi, M.A. (2013), "Timedependent behavior of tunnel lining in weak rock mass based on displacement back analysis method", Tunn. Undergr. Sp. Technol., 38, 348-356. https://doi.org/10.1016/j.tust.2013.07.014.   DOI