• 제목/요약/키워드: Parallel Mechanism

검색결과 621건 처리시간 0.035초

병진운동을 하는 XYZ 마이크로 병렬형 머니퓰레이터의 기구학적 특성 분석 (Kinematic Analysis of the Characteristics of Translational XYZ Micro Parallel Manipulator)

  • 김은석;양현익
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.441-450
    • /
    • 2007
  • In this study, a 3-DOF XYZ micro parallel manipulator utilizing compliance mechanism is developed and analyzed. In so doing, a matrix method is used to rapidly solve displacements of the designed kinematic structure, and then kinematic characteristics of the developed manipulator are analyzed. Finally, the design analysis of the kinematic characteristics by changing hinge thickness and structure to improve workspace and translation motion is performed to show that the performance of the developed manipulator is relatively superior to the other similar kind of manipulators.

유전 알고리즘을 이용한 6자유도 병렬기구의 최적화 설계 (Optimal Design of a 6-DOF Parallel Mechanism using a Genetic Algorithm)

  • 황윤권;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.560-567
    • /
    • 2007
  • The objective of this research is to optimize the designing parameters of the parallel manipulator with large orientation workspace at the boundary position of the constant orientation workspace (COW). The method uses a simple genetic algorithm(SGA) while considering three different kinematic performance indices: COW and the global conditioning index(GCI) to evaluate the mechanism's dexterity for translational motion of an end-effector, and orientation workspace of two angle of Euler angles to obtain the large rotation angle of an end-effector at the boundary position of COW. Total fifteen cases divided according to the combination of the sphere radius of COW and rotation angle of orientation workspace are studied, and to decide the best model in the total optimized cases, the fuzzy inference system is used for each case's results. An optimized model is selected as a best model, which shows better kinematic performances compared to the basis of the pre-existing model.

An Ultraprecise Machining System with a Hexapod Device to Measure Six-Degree-Of-Freedom Relative Motions Between The Tool And Workpiece

  • Oiwa, Takaaki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.3-8
    • /
    • 2007
  • A machining system that generates accurate relative motions between the tool and workpiece is required to realize ultra precise machining or measurements. Accuracy improvements for each element of the machine are also required. This paper proposes a machining system that uses a compensation device for the six-degree-of-freedom (6-DOF) motion error between the tool and workpiece. The compensation device eliminates elastic and thermal errors of the joints and links due to temperature fluctuations and external forces. A hexapod parallel kinematics mechanism installed between the tool spindle and surface plate is passively actuated by a conventional machine. Then the parallel mechanism measures the 6-DOF motions. We describe the conception and fundamentals of the system and test a passively extensible strut with a compensation device for the joint errors.

Kinematics and Optimization of 2-DOF Parallel Manipulator with Revolute Actuators and a Passive Leg

  • Nam Yun-Joo;Park Myeong-Kwan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.828-839
    • /
    • 2006
  • In this paper, a 2-DOF planar parallel manipulator with two revolute actuators and one passive constraining leg. The kinematic analysis of the mechanism is analytically performed : the inverse and forward kinematics problems are solved in closed forms, the workspace is derived systematically, and the three kinds of singular configurations are round. The optimal design to determine the geometric parameters and the operating limits of the actuated legs is performed considering the kinematic manipulability and workspace size. These results of the paper show the effectiveness of the presented manipulator.

링크의 강성이 육면형 병렬 기구 오차에 미치는 영향 (Effect of Link Stiffness on Error of Cubic Parallel Manipulator)

  • 강경우;임승룡;최우천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.479-482
    • /
    • 2001
  • An error analysis is very important for a precision machine to estimate its performances. This study proposes a new parallel device. cubic parallel manipulator. There are so many error sources in this mechanism. Errors of the proposed cubic parallel vary with the stiffness of the manipulator. The stiffness of each leg depends on the direction of the actuation force and its direction. In this paper, the stiffness of the manipulator is calculated and the position errors and the orientation errors are predicted with the platform moving. The analysis shows that the method can be used in predicting the accuracy of other parallel devices and in designing a parallel manipulator.

  • PDF

3차원 작업영역에서 링크 강성이 육면형 병렬 기구 오차에 미치는 영향 (Effect of Link Stiffness on Error of Cubic Parallel Manipulator in 3D Workspace)

  • 박성철;임승룡;김현수;최우천;송재복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.397-401
    • /
    • 1997
  • An error analysis is very important for a precision machine to estimate its performances. This study deals with error of a new parallel device, cubic parallel manipulator. There are so many error sources in this mechanism. Errors of the cubic parallel device vary depending on the stiffness of the manipulator. The stiffness of each link depends on the directions of the link and actuation force. In this paper, the stiffness of the manipulator is calculated by ARAQUS and the position and orlentation errors are predicted within a given workspace. The analysis shows that the method can be used in predicting the accuracy of other parallel devices and in designing parallel devices.

  • PDF

병렬컴퓨팅 환경에서의 대용량 퍼지 추론 (Fuzzy Inference of Large Volumes in Parallel Computing Environment)

  • 김진일;박찬량;이동철;이상구
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.13-16
    • /
    • 2000
  • In fuzzy expert systems or database systems that have huge volumes of fuzzy data or large fuzzy rules, the inference time is much increased. Therefore, a high performance parallel fuzzy computing environment is needed. In this paper, we propose a parallel fuzzy inference mechanism in parallel computing environment. In this, fuzzy rules are distributed and executed simultaneously. The ONE_TO_ALL algorithm is used to broadcast the fuzzy input vector to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of fuzzy rules or data, the parallel fuzzy inference algorithm extracts effective parallel ism and achieves a good speed factor.

  • PDF

6자유도를 갖는 병렬형 기구의 병진속도와 회전속도 성능 지표에 관한 연구 (A Study on Translational and Rotational Velocity Performance Indices of Six-Degree-of-Freedom parallel Mechanism)

  • 김찬수
    • 한국게임학회 논문지
    • /
    • 제10권6호
    • /
    • pp.57-65
    • /
    • 2010
  • 본 논문에서는 6자유도를 갖는 병렬형 기구의 출력 속도 공간에서 성능을 평가할 수 있는 지표를 제안하였다. Manipulability와 condition number에 기반을 둔 성능 지표가 단위계의 볼일치로 인한 물리적 의미의 결함이 없도록 출력공간을 병진속도 공간과 회전속도 공간으로 분리하는 방법을 제안하였다. 각 공간에서 단위 입력에 대용하는 mobility ellipsoid를 정의하여 이를 기반으로 병진운동 출력공간에서 두 종류 성능 지표와 회전운동 공간에서 두 종류의 성능 지표를 제안하였다.

높은 회전성능($100^{\circ}$)을 가지는 초정밀 위치결정용 마이크로 병렬기구 플랫폼의 개발 (A Micro-positioning Parallel Mechanism Platform with 100-degree Tilting Capability)

  • 윤용하;강득수;서태원;김홍석;성태종;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.131-132
    • /
    • 2006
  • This paper presents a micro-positioning platform based on the unique parallel mechanism recently developed by the authors. The platform has a meso-scale rectangular shape whose size is $20{\times}23m$. The stroke is 5 mm for both the x- and y-axis and 100 degrees for the ${\alpha}$-axis(the rotational axis along the x-axis). The platform is actuated by the three sets of two-stage linear actuators: a linear motor for rough positioning and a piezo actuator for fine positioning. The platform is already assembled. Experimental results of the positioning measurements and control performance are presented.

  • PDF

여유 구동 병렬기구를 이용한 마스크-패널 얼라인 로붓 시스템 (Mask-Panel Alignment Robot System Using a Parallel Mechanism with Actuation Redundancy)

  • 정해민;권상주;이상무
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.887-893
    • /
    • 2009
  • In this paper, a mask-panel alignment robot system is considered for IT industry applications. Two kinds of solutions are suggested which are required in constructing a control system for the alignment robot with actuation redundancy. First, the kinematic solution for the 4PPR parallel positioning mechanism is formulated for an arbitrary initial posture, which relates the mask-panel misalignment in the task space and the desired actuator displacements in the joint space. Secondly, in order to increase the stiffness of the control motion and also to avoid the mechanical lock which may happen due to the redundant actuation, a new synchronous control method is proposed which has the merit of coordinating joint control motions while not losing individual joint control performance. In addition, the engineering process to develop a visual alignment robot system is described with the results of experimental setup and GUI software. Finally, the experimental results demonstrate the effectiveness of the proposed alignment system control methodology and how much beneficial it will be in real industrial applications.