• Title/Summary/Keyword: Parallel Logic Simulation

Search Result 69, Processing Time 0.026 seconds

Checkpoint/Resimulation Overhead Minimization with Sporadic Synchronization in Prediction-Based Parallel Logic Simulation (간헐적 동기화를 통한 예측기반 병렬 로직 시뮬레이션에서의 체크포인트/재실행 오버헤드 최소화)

  • Kwak, Doohwan;Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.5
    • /
    • pp.147-152
    • /
    • 2015
  • In general, there are two synchronization methods in parallel event-driven simulation, pessimistic approach and optimistic approach. In this paper, we propose a new approach, sporadic synchronization combining both for prediction-based parallel event-driven logic simulation. We claim this hybrid solution is pretty effective to minimize both checkpoint overhead and restart overhead, which are related problems with frequent false predictions for improving the performance of the prediction-based parallel event-driven logic simulation. The experiment has clearly shown the advantage of the proposed approach.

Enhancement of Clock Advancement in Parallel Logic Simulation (병렬처리 논리 시뮬레이션에서 클럭 진행의 개선)

  • 정연모
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.2
    • /
    • pp.15-25
    • /
    • 1994
  • Efficient event evaluation and propagation techniques are proposed to enhance the advancement of simulation clocks of conservative and optimistic logic simulation protocols on parallel processing environments. The first idea of the techniques proposed in this paper is to allow more than one event evaluation per simulation cycle and to pack more than one propagation event in a single message. The second idea is to use advancement windows resulted in good performance in parallelism and execution times.

  • PDF

A New Prediction-Based Parallel Event-Driven Logic Simulation (새로운 예측기반 병렬 이벤트구동 로직 시뮬레이션)

  • Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.3
    • /
    • pp.85-90
    • /
    • 2015
  • In this paper, anew parallel event-driven logic simulation is proposed. As the proposed prediction-based parallel event-driven simulation method uses both prediction data and actual data for the input and output values of local simulations executed in parallel, the synchronization overhead and the communication overhead, the major bottleneck of the performance improvement, are greatly reduced. Through the experimentation with multiple designs, we have observed the effectiveness of the proposed approach.

Logic circuit design for high-speed computing of dynamic response in real-time hybrid simulation using FPGA-based system

  • Igarashi, Akira
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1131-1150
    • /
    • 2014
  • One of the issues in extending the range of applicable problems of real-time hybrid simulation is the computation speed of the simulator when large-scale computational models with a large number of DOF are used. In this study, functionality of real-time dynamic simulation of MDOF systems is achieved by creating a logic circuit that performs the step-by-step numerical time integration of the equations of motion of the system. The designed logic circuit can be implemented to an FPGA-based system; FPGA (Field Programmable Gate Array) allows large-scale parallel computing by implementing a number of arithmetic operators within the device. The operator splitting method is used as the numerical time integration scheme. The logic circuit consists of blocks of circuits that perform numerical arithmetic operations that appear in the integration scheme, including addition and multiplication of floating-point numbers, registers to store the intermediate data, and data busses connecting these elements to transmit various information including the floating-point numerical data among them. Case study on several types of linear and nonlinear MDOF system models shows that use of resource sharing in logic synthesis is crucial for effective application of FPGA to real-time dynamic simulation of structural response with time step interval of 1 ms.

Efficient Parallel Logic Simulation on SIMD Computers (SIMD 컴퓨터상에서 효율적인 병렬처리 논리 시뮬레이션)

  • Chung, Yun-Mo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.315-326
    • /
    • 1996
  • As the complexity of VLSI circuits has increased, a lot of simulation time for verifying their correctness has been required. This paper presents efficient parallelel logic simulation protocols, data structures, algorithms to implement fast logic simulation on SIMD parallel processing computers. The performance results of the presented schemes on CM-2 are given and analyzed.

  • PDF

Acceleration Techniques for Cycle-Based Login Simulation (사이클 기반 논리시뮬레이션 가속화 기법 연구)

  • Park, Young-Ho;Park, Eun-Sei
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.45-50
    • /
    • 2001
  • With increasing complexity of digital logic circuits, fast and accurate verification of functional behaviour becomes most critical bottleneck in meeting time-to-market requirement. This paper presents several techniques for accelerating a cycle-based logic simulation. The acceleration techniques include parallel pattern logic evaluation, circuit size reduction, and the partition of feedback loops in sequential circuits. Among all, the circuit size reduction plays a critical role in maximizing logic simulation speedup by reducing 50% of entire circuit nodes on the average. These techniques are incorporated into a levelized table-driven logic simulation system rather than a compiled-code simulation algorithm. Finally, experimental results are given to demonstrate the effectiveness of the proposed acceleration techniques. Experimental results show more than 27 times performance improvement over single pattern levelized logic simulation.

  • PDF

Prediction-Based Parallel Gate-Level Timing Simulation Using Spatially Partial Simulation Strategy (공간적 부분시뮬레이션 전략이 적용된 예측기반 병렬 게이트수준 타이밍 시뮬레이션)

  • Han, Jaehoon;Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.3
    • /
    • pp.57-64
    • /
    • 2019
  • In this paper, an efficient prediction-based parallel simulation method using spatially partial simulation strategy is proposed for improving both the performance of the event-driven gate-level timing simulation and the debugging efficiency. The proposed method quickly generates the prediction data on-the-fly, but still accurately for the input values and output values of parallel event-driven local simulations by applying the strategy to the simulation at the higher abstraction level. For those six designs which had used for the performance evaluation of the proposed strategy, our method had shown about 3.7x improvement over the most general sequential event-driven gate-level timing simulation, 9.7x improvement over the commercial multi-core based parallel event-driven gate-level timing simulation, and 2.7x improvement over the best of previous prediction-based parallel simulation results, on average.

Performance Improvement of Prediction-Based Parallel Gate-Level Timing Simulation Using Prediction Accuracy Enhancement Strategy (예측정확도 향상 전략을 통한 예측기반 병렬 게이트수준 타이밍 시뮬레이션의 성능 개선)

  • Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.439-446
    • /
    • 2016
  • In this paper, an efficient prediction accuracy enhancement strategy is proposed for improving the performance of the prediction-based parallel event-driven gate-level timing simulation. The proposed new strategy adopts the static double prediction and the dynamic prediction for input and output values of local simulations. The double prediction utilizes another static prediction data for the secondary prediction once the first prediction fails, and the dynamic prediction tries to use the on-going simulation result accumulated dynamically during the actual parallel simulation execution as prediction data. Therefore, the communication overhead and synchronization overhead, which are the main bottleneck of parallel simulation, are maximally reduced. Throughout the proposed two prediction enhancement techniques, we have observed about 5x simulation performance improvement over the commercial parallel multi-core simulation for six test designs.

A Circuit Design of 4:1 Parallel ADC Using Source Coupled FET Logic (Source Coupled FET Logic을 이용한 4:1 병렬 ADC 설계)

  • 윤몽한;임명호;이상원;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.6
    • /
    • pp.467-474
    • /
    • 1990
  • In this paper, the circuit that has characteristics of high speed and low dissipation is described. A 4:1 parallel ADC is constructed by using the designed SCFL(Source Coupled FET Logic). The results of simulation shows that comparators is obtained integrated nonlinearity, $\pm$28mV, compared with limiting value, $\pm$68mV, at 66NHz input signal and 2Gs/s Niquist rates and this paper describes low power dissipation about 0.43W by reducing the elements in a ADC design.

  • PDF

Design and Implementation of a Fault Simulation System for Mixed-level Combinational Logic Circuits (혼합형 조합 회로용 고장 시뮬레이션 시스템의 설계 및 구현)

  • Park, Yeong-Ho;Son, Jin-U;Park, Eun-Se
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.311-323
    • /
    • 1997
  • This paper presents a fast fault simulation system for detecting stuck-at faults in mixed-level combinational logic circuits with gale level and switch -level primitives. For a practical fault simulator, the types are not restricted to static switch-level and/or gate-level circuits, but include dynamic switch-level circuits. To efficiently handle the multiple signal contention problems at wired logic elements, we propose a six-valued logic system and its logic calculus which are used together with signal strength information. As a basic algorithm for the fault simulation process, a well -known gate-level parallel pattern single fault propagation(PPSFP) technique is extended to switch-level circuits in order to handle pass-transistor circuits and precharged logic circuits as well as static CMOS circuits. Finally, we demonstrate the efficiency of our system through the experimental results for switch-level ISCAS85 benchmark combinational circuits and various industrial mixed-level circuits.

  • PDF