• Title/Summary/Keyword: Paenibacillus spp.

Search Result 18, Processing Time 0.03 seconds

Isolation and Characterization of a Paenibacillus incheonensis YK5 with Antimicrobial Activity aginst MRSA (항MRSA 활성을 보이는 Paenibacillus incheonensis YK5의 분리 및 특성)

  • Yoon, Young-Jun;Kim, Hye-Yoong;Lee, Tae-Soo;Kim, Jung-Wan
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.326-332
    • /
    • 2008
  • Various bacteria were isolated from Korean soil samples based on their capability inhibiting the growth of MRSA strains. Among them, strain YK5 with the highest activity was a Gram positive sporulative bacillus with motility. It did not produce indole and no acid was formed from mannitol by the bacterium. The 16S rRNA sequence of the strain showed $95{\sim}98%$ homology with those of Paenibacillus spp.. The bacterial isolate shared the highest homology with that of P. elgii (98%), but was named as Paenibacillus incheonensis YK5 due to differences in physiological properties. Butanol extract of the P. incheonensis YK5 culture grown in SST medium at $37^{\circ}C$ for 96 hr showed a broad antimicrobial activity against Gram-positive (MRSA and Streptococcus pneumoniae) and negative (Pseudomonas aeruginosa, Salmonella spp., Shigella spp., Escherichia coli, Klebsiella pneumoniae) pathogenic bacteria and fungi (Cryptococcus neoformans and Trichophyton). The antimicrobial activity in the crude extract was stable in a broad range of temperature and pH, $20{\sim}100^{\circ}C$ and $3.0{\sim}6.0$, respectively. Therefore, the antimicrobial activity of P. incheonesis YK5 had potential as a novel antibiotics for pathogens including MRSA.

Growth Inhibition Profile of an Antibacterial Entity from Paenibacillus DY1 Isolated from Korean Soil against Multidrug Resistant Enteric Bacterial Strains and Its Characterization

  • Shin, Eun-Seok;Kwon, Sun-Il;Yoo, Kwan-Hee
    • Biomedical Science Letters
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • Due to wide abuse of antibiotics both in human and livestock use, the advent and spread of multidrug resistant (MDR) pathogens becomes a serious health problem all over the world. Since the development of new antibiotics is at a standstill in pharmaceutical industry, the choice of therapeutic antibiotics is getting narrower. In this study, in an effort to search new antibiotics, the antimicrobial activity of Paenibacillus DY1 isolated from Korean soil was characterized on its growth inhibition spectrum against various health threatening MDR strains, with its stability and chemical structure. Extracellular culture filtrate of Paenibacillus DY1 effectively inhibits the growth of all the tested MDR enteropathogenic Eshcherichia coli, enterohemolytic E. coli, and enterotoxigenic E. coli strains, at a similar level to that on the nonresistant control E. coli strains. It showed significant growth inhibition effect against the causative agents of class one legal communicable disease, MDR Salmonella typhi, MDR Salmonella paratyphi A, food poisoning bacteria, MDR Salmonella typhimurium, and other MDR Salmonella spp. The growth of all of 10 different MDR Shigella spp. strains and 6 different Vibrio spp. strains tested was also inhibited. The antimicrobial activity of Paenibacillus DY1 was well preserved after heat treatment, and was also stable in both alkaline and acidic environment. The antimicrobial activity was partially purified with Diaion HP20 column and TLC. By NMR study, the putative structure of the activity was postulated as an alkane having hydroxyl groups.

  • PDF

Difference of Catechins Extracted Level when Fermented Sun-dried Salt and Green Tea (천일염과 녹차를 발효시켰을 때 Catechin류의 추출량 변화)

  • Yun, Hyun;Oh, Hye-Jong;Choi, Sung-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.278-285
    • /
    • 2012
  • In an experiment in which fermentation was done by adding fungal species that have antibiosis but do not have cellulase, the extraction amount of EGC, EC, EGCG, and ECG increased in all samples that fermented by adding sun-dried salt compared to those that fermented only with green tea after fermenting green tea by mixing it with sun-dried salt. In the analysis conducted according to the days of fermentation, the high extraction amounts of EGC(epigallocatechin), ECG(epicatechin gallate), EC(epicatechin), and EGCG(epigallocatechin gallate) were detected on the second and third day. Furthermore, when fermentation was done by adding ferment bacillus, all types of catechin(EGC, EC, EGCG, ECG) extraction increased in Paenibacillus spp but in Bacillus amyloliquefaciens, EGC and EC decreased while EGCG and ECG increased; whereas in Bacillus pumilus and Bacillus subtilis all types of catechin(EGC, EC, EGCG, ECG) decreased. The results of the above experiment reveal that the largest amount of catechin was extracted from the result which conducted fermentation for three days together with sun-dried salt and Paenibacillus spp in the green tea.

Diversity of Root-Associated Paenibacillus spp. in Winter Crops from the Southern Part of Korea

  • CHEONG HOON;PARK SOO-YOUNG;RYU CHOONG-MIN;KIM JIHYUN F.;PARK SEUNG-HWAN;PARK CHANG SEUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1286-1298
    • /
    • 2005
  • The genus Paenibacillus is a new group of bacilli separated from the genus Bacillus, and most of species have been isolated from soil. In the present study, we collected 450 spore-forming bacilli from the roots of winter crops, such as barley, wheat, onion, green onion, and Chinese cabbage, which were cultivated in the southern part of Korea. Among these 450 isolates, 104 Paenibacillus-like isolates were selected, based on their colony shape, odor, color, and endospore morphology, and 41 isolates were then finally identified as Paenibacillus spp. by 16S rDNA sequencing. Among the 41 Paenibacillus isolates, 23 were classified as P. polymyxa, a type species of the genus Paenibacillus, based on comparison of the 16S rDNA sequences with those of 32 type strains of the genus Paenibacillus from the GenBank database. Thirty-five isolates among the 41 Paenibacillus isolates exhibited antagonistic activity towards plant fungal and bacterial pathogens, whereas 24 isolates had a significant growth-enhancing effect on cucumber seedlings, when applied to the seeds. An assessment of the root-colonization capacity under gnotobiotic conditions revealed that all 41 isolates were able to colonize cucumber roots without any significant difference. Twenty-one of the Paenibacillus isolates were shown to contain the nifH gene, which is an indicator of $N_{2}$ fixation. However, the other 20 isolates, including the reference strain E681, did not incorporate the nifH gene. To investigate the diversity of the isolates, a BOX-PCR was performed, and the resulting electrophoresis patterns allowed the 41 Paenibacillus isolates to be divided into three groups (Groups A, B, and C). One group included Paenibacillus strains isolated mainly from barley or wheat, whereas the other two groups contained strains isolated from diverse plant samples. Accordingly, the present results showed that the Paenibacillus isolates collected from the rhizosphere of winter crops were diverse in their biological and genetic characteristics, and they are good candidates for further application studies.

Root Exudation by Aphid Leaf Infestation Recruits Root-Associated Paenibacillus spp. to Lead Plant Insect Susceptibility

  • Kim, Bora;Song, Geun Cheol;Ryu, Choong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.549-557
    • /
    • 2016
  • Aphids are a large group of hemipteran pests that affect the physiology, growth, and development of plants by using piercing mouthparts to consume fluids from the host. Based an recent data, aphids modulate the microbiomes of plants and thereby affect the overall outcome of the biological interaction. However, in a few reports, aboveground aphids manipulate the metabolism of the host and facilitate infestations by rhizosphere bacteria (rhizobacteria). In this study, we evaluated whether aphids alter the plant resistance that is mediated by the bacterial community of the root system. The rhizobacteria were affected by aphid infestation of pepper, and a large population of gram-positive bacteria was detected. Notably, Paenibacillus spp. were the unique gram-positive bacteria to respond to changes induced by the aphids. Paenibacillus polymyxa E681 was used as a rhizobacterium model to assess the recruitment of bacteria to the rhizosphere by the phloem-sucking of aphids and to test the effect of P. polymyxa on the susceptibility of plants to aphids. The root exudates secreted from peppers infested with aphids increased the growth rate of P. polymyxa E681. The application of P. polymyxa E681 to pepper roots promoted the colonization of aphids within 2 days of inoculation. Collectively, our results suggest that aphid infestation modulated the root exudation, which led to the recruitment of rhizobacteria that manipulated the resistance of peppers to aphids. In this study, new information is provided on how the infestation of insects is facilitated through insect-derived modulation of plant resistance with the attraction of gram-positive rhizobacteria.

Biocontrol of Fusarium Crown and Root Rot and Promotion of Growth of Tomato by Paenibacillus Strains Isolated from Soil

  • Xu, Sheng Jun;Kim, Byung Sup
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant.

Effects of a Soil-Born Paenibacillus spp. Strain KPB3 on Suppression of Bacterial Wilt Disease Caused by Ralstonia solanacearum (토양에서 분리한 Paenibacillus spp. KPB3의 Ralstonia solanacearum에 의한 세균성 풋마름병 억제 효과)

  • Suk, Jung-Ki;Ipper, Nagesh S.;Lee, Seon-Hwa;Shrestha, Anupama;Park, Duck-Hwan;Cho, Jun-Mo;Hur, Jang-Hyun;Kim, Byung-Sup;Lim, Chun-Keun
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.313-319
    • /
    • 2006
  • Two hundred bacterial strains were isolated from the soil around healthy tomato plants in a polyvinyl house, where most of the other plants showed bacterial wilt symptoms. The strains were screened in vitro for their antibacterial activity. Among them, a strain, KPB3 showed strong bactericidal activity against bacterial wilt pathogen, Ralstonia solanacearum. The strain KPB3 was identified using physiological and biochemical tests, and 16S rRNA analyses. Based on these tests, the strain was found to be closer to genus Paenibacillus. To control the bacterial wilt caused by R. solanacearum, greenhouse experiments were conducted to determine the effectiveness of the Paenibacillus strain KPB3. Drench application of this strain ($4{\times}10^8$ CFU $mL^{-1}$) into the pots containing tomato plants, post-inoculated with the pathogen, R. solanacearum could drastically reduce the disease severity, compared to the non-treated plants. To evaluate effectiveness of this strain under field conditions, experiments were carried out in polyvinyl houses infested with R. solanacearum, during spring and autumn of the year 2006. It was observed that, during spring, bacterial wilt was more prevalent compared to the autumn. During spring, 50.9% disease incidences occurred in non-treated controls, while, Paenibacillus strain KPB3 treated plants showed 24.6% disease incidences. Similarly, during autumn, around 17.2% plants were infected with bacterial wilt in non- treated polyvinyl houses, compared to the Paenibacillus strain KPB3 treated plants, which showed 7.0% disease incidences. These results demonstrated that, Paenibacillus strain KPB3 is a potential biological control agent against bacterial wilt caused by R. solanacearum, effective under greenhouse as well as field conditions. This is the first report showing biocontrol of R. solanacearum using a Paenibacillus spp. under field conditions.

Isolation of Bacteria Associated with Fresh Sponges in Lake Baikal (바이칼 호수에 서식하는 담수 스폰지 내 공생세균의 분리)

  • Cho, Ahn-Na;Kim, Ju-Young;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.spc
    • /
    • pp.39-47
    • /
    • 2014
  • Sponge in Lake Baikal is an unique organism. Microorganisms in sponges are assumed as precious resources for bioactive materials. For understanding the bacterial community in Baikalian sponges by cultivation, 92 strains of bacteria were isolated from lake water and 2 species of sponges, Baikalospongia sp. and Lubomirskia sp., Thirty five bacterial strains are isolated from ambient water near the sponge, 27 bacterial strains from Baikalospongia sp., 30 bacterial strains from Lubomirskia sp.. As a result, 78.3% and 57.6% of isolated bacterial strains has amylase and protease activity respectively, while strains with cellulose and lipase activities were 38.0% and 34.8%. By 16S rRNA sequence analysis of selected strains, 13 strains which were isolated from Baikalospongia sp. were belong to Pseudomonas spp.. Whereas, 14 strains which were isolated from Lubomirskia sp. were Pseudomonas spp., Buttiauxella agrestis, Pseudomonas fluorescens, Yersinia ruckeri, Bacillus spp., Paenibacillus spp., Bacillus thuringiensis, Bacillus simplex, Brevibacterium spp., Acinetobacter lwoffii. In culture media, Pseudomonas spp. dominance was supposed that according to allelophathy.

Diversity of Paenibacillus spp. in the Rhizosphere of Four Sorghum(Sorghum bicolor) Cultivars Sown with Two Contrasting Levels of Nitrogen Fertilizer Assessed by rpoB-Based PCR-DGGE and Sequencing Analysis

  • Coelho, Marcia Reed Rodrigues;Mota, Fabio Faria Da;Carneiro, Newton Portilho;Marriel, Ivanildo Evodio;Paiva, Edilson;Rosado, Alexandre Soares;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.753-760
    • /
    • 2007
  • The diversity of Paenibacillus species was assessed in the rhizospheres of four cultivars of sorghum sown in Cerrado soil amended with two levels of nitrogen fertilizer(12 and 120 kg/ha). Two cultivars(IS 5322-C and IS 6320) demanded the higher amount of nitrogen to grow, whereas the other two(FBS 8701-9 and IPA 1011) did not. Using the DNA extracted from the rhizospheres, a Paenibacillus-specific PCR system based on the RNA polymerase gene(rpoB) was chosen for the molecular analyses. The resulting PCR products were separated into community fingerprints by DGGE and the results showed a clear distinction between cultivars. In addition, clone libraries were generated from the rpoB fragments of two cultivars(IPA 1011 and IS 5322-C) using both fertilization conditions, and 318 selected clones were sequenced. Analyzed sequences were grouped into 14 Paenibacillus species. A greater diversity of Paenibacillus species was observed in cultivar IPA 1011 compared with cultivar IS 5322-C. Moreover, statistical analyses of the sequences showed that the bacterial diversity was more influenced by cultivar type than nitrogen fertilization, corroborating the DGGE results. Thus, the sorghum cultivar type was the overriding determinative factor that influenced the community structures of the Paenibacillus communities in the habitats investigated.

Characterization of Phosphate-solubilizing Microorganisms in Upland and Plastic Film House Soils (밭과 시설재배지 토양의 인산가용화 미생물의 특성)

  • Suh, Jang-Sun;Kwon, Jang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.348-353
    • /
    • 2008
  • With the aim to explore the possible role of phosphate-solubilizing bacteria in soil, we conducted a survey of phosphate-solubilizing microorganisms colonizing in upland and plastic film house soils. Soil EC, pH, organic matter, available phosphate, exchangeable cation such as potassium, calcium and magnesium, and total P of plastic film house soils were higher than those of upland soils. Phosphate-solubilizing bacteria population was higher in plastic film house soils than upland soils, but species of phosphate-solubilizing bacteria was more diverse in the upland soils than the plastic film house soils. There was significant positive correlation between phosphate solubilization and phosphate-solubilizing bacteria in soils. Bacillus, Cedecea, Brevibacillus, Paenibacillus, Pseudomonas, Serratia spp. were isolated from upland soils and Bacillus and Cellulomonas spp. were from plastic film house soils.