Isolation and Characterization of a Paenibacillus incheonensis YK5 with Antimicrobial Activity aginst MRSA

항MRSA 활성을 보이는 Paenibacillus incheonensis YK5의 분리 및 특성

  • Published : 2008.12.31

Abstract

Various bacteria were isolated from Korean soil samples based on their capability inhibiting the growth of MRSA strains. Among them, strain YK5 with the highest activity was a Gram positive sporulative bacillus with motility. It did not produce indole and no acid was formed from mannitol by the bacterium. The 16S rRNA sequence of the strain showed $95{\sim}98%$ homology with those of Paenibacillus spp.. The bacterial isolate shared the highest homology with that of P. elgii (98%), but was named as Paenibacillus incheonensis YK5 due to differences in physiological properties. Butanol extract of the P. incheonensis YK5 culture grown in SST medium at $37^{\circ}C$ for 96 hr showed a broad antimicrobial activity against Gram-positive (MRSA and Streptococcus pneumoniae) and negative (Pseudomonas aeruginosa, Salmonella spp., Shigella spp., Escherichia coli, Klebsiella pneumoniae) pathogenic bacteria and fungi (Cryptococcus neoformans and Trichophyton). The antimicrobial activity in the crude extract was stable in a broad range of temperature and pH, $20{\sim}100^{\circ}C$ and $3.0{\sim}6.0$, respectively. Therefore, the antimicrobial activity of P. incheonesis YK5 had potential as a novel antibiotics for pathogens including MRSA.

국내 토양으로부터 MRSA에 대해 항균활성을 보이는 세균들을 분리하였다. 이들 가운데 가장 높은 항MRSA 균 활성을 보인 YK5 균주는 호기성 간균으로 운동성이 있고, 내생포자를 형성하였으며, 인돌을 형성하지 않았고, mannitol을 분해하여 산을 생성시키지 않았다. 이 균주의 16S rRNA 유전자 염기서열은 Paenibacillus 속 세균들의 유전자와 $95{\sim}98%$의 상동성을 나타냈는데 특히 P. elgii와 가장 높은 상동성을 보였으나, 기타 생리 생화학적 특성에서 다른 점들이 관찰되어 P. incheonensis YK5로 명명되었다. P. incheonensis YK5 를 SST 배지에 접종하여 $37^{\circ}C$에서 96 시간 배양한 다음 그 상등액으로 부터 부탄올로 추출된 항균물질은 그람 양성균인 MRSA 20 균주들과 Streptococcus pneumoniae, 그람 음성균인 Pseudomonas aeruginosa 10균주들, Salmonella spp., Shigella spp., Escherichia coli와 Klebsiella pneumoniae 및 인체병원성 진균인 Cryptococcus neoformans와 Trichophyton spp.에 대하여 광범위한 항균효과를 나타냈다. 또한 이 항균물질은 $20{\sim}100^{\circ}C$ 사이의 온도구간에서 안정한 활성을 유지하였을 뿐만 아니라, pH $3.0{\sim}7.0$의 넓은 pH범위에서 활성을 나타내 MRSA를 비롯한 다양한 병원균에 대한 항생물질로서의 가능성을 보였다.

Keywords

References

  1. Aram, J. and A.E. Glatt. 1998. True community-acquired methicillin- resistant Staphylococcus aureus bacteremia. Infect. Control. Hosp. Epidemiol. 19, 106-107 https://doi.org/10.1086/647775
  2. Ash, C., F.G. Priest, and M.D. Collins. 1993. Molecular identifica-tion of rRNA group 3 bacilli (Ash, Farrow, Wallbanks, and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64, 253-260 https://doi.org/10.1007/BF00873085
  3. Berdy, J. 1989. The discovery of new bioactive microbial metabolites : Screening and identification. In M.E. Bushell and U. Grafe (eds.), Bioactive metabolites from microorganisms, Elsevier, Amsterdam. 3, 25
  4. Centers for Disease Control and Prevention. 2002. Staphylococcus aureus resistant to vancomycin-United States, 2002 MMWR 51, 565-567
  5. Chung, Y.R., C.H. Kim, I. Hwang, and J. Chun. 2000. Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int. J. Syst. Evol. Microbiol. 50, 1495-1500 https://doi.org/10.1099/00207713-50-4-1495
  6. Davis, S.L., M.B. Perri, S.M. Donabedian, C. Manierski, A. Singh, D. Vager, N.Z. Haque, K. Speirs, R.R. Muder, B. Robinson-Dunn, M.K. Hayden, and M.J. Zervos. 2007. Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus. Infection. J. Clin. Microbiol. 45, 1705-1711
  7. Falagas, M.E. and S.K. Kasiakou. 2005. Colistin: the revival of polymyxins for the management of multidrug-resistant gram negative bacterial infections. Clin. Infect. Dis. 40, 1333-1341 https://doi.org/10.1086/429323
  8. Falagas, M.E. and S.K. Kasiakou. 2006. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit. Care. 10, R27
  9. Gedney, J. and R.W. Lacey. 1982. Properties of methicillin-resistant staphylococci now endemic in Australia. Med. J. Aust. 1, 448-450
  10. Govaerts, C., J. Orwa, A. Van Schepdael, E. Roets, and J. Hoogmartens. 2002. Characterization of polypeptide antibiotics of the polymyxin series by liquid chromatography electrospray ionization ion trap tandem mass spectrometry. J. Pept. Sci. 8, 45-55 https://doi.org/10.1002/psc.367
  11. He, Z., D. Kisla, L. Zhang, C. Yuan, K.B. Green-Church, and A.E. Yousef. 2007. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl. Environ. Microbiol. 73, 168-178
  12. Heyndrickx, M., K. Vandemeulebroecke, B. Hoste, P. Janssen, K. Kersters, P. De Vos, N.A. Logan, N. Ali, and R.C.W. Berkeley. 1996. Reclassification of Paenibacillus (formerly Bacillus) pulvifaciens (Nakamura 1966) Ash et al. 1994, a later subjective synonym of Paenibacillus (formerly Bacillus) larvae (White 1984) Ash et al. 1994, as a subspecies of P. larvae, with emended description of P. larvae as P. larvae subsp. larvae and P. larvae subsp. pulvifaciens. Int. J. Syst. Bacteriol. 46, 270-279
  13. Hiramatsu, K. 2001. Vancomycin resistant Staphylococcus aureus : a new model of antibiotic resistance. J. Infect. Dis. 1, 1-16
  14. Hiramatsu, K., N. Aritaka, H. Hanaki, S. Kawasaki, Y. Hosoda, S. Hori, Y. Fukuchi, and I. Kobayashi. 1997. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350, 1670-1673 https://doi.org/10.1016/S0140-6736(97)07324-8
  15. Holt, J.G., N.R. Krieg, P.H.A. Sneaht, J.T. Staley, and S.T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, 9th, Williams Wilkins, USA
  16. Jeffrey, W.W., S. Tallapragada, P. Farrel, and L.M. Dembry. 1996. Comparison of rectal and perirectal swabs for detection of colonization with vancomycin-resistant Enterococci. J. Clin. Microbiol. 34, 210-212
  17. Kim, D.S., C.Y. Bae, J.J. Jeon, S.J. Chun, H.W. Oh, S.G. Hong, K.S. Baek, E.Y. Moon, and K.S. Bae. 2004. Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int. J. Syst. Evol. Microbiol. 54, 2031-2035 https://doi.org/10.1099/ijs.0.02414-0
  18. Kim, M.N., C.H. Pai, J.H. Woo, J.S. Ryu, and K. Hiramatsu. 2000. Vancomycin resistant Staphylococcus aureus in Korea. J. Clin. Microbiol. 38, 3879-3881
  19. Kim, K.M., J.H. Yoo, J.H. Choi, E.S. Park, K.S. Kim, K.S. Kim, S.R. Kim, S.M. Kim, H.J. Kim, J.S. Jung, K.H. Yoo, H.S. Oh, S.W. Yoon, M.R. Suh, Y.K. Yoon, J.Y. Lee, Y.K. Jang, H.Y. Jin, S.W. Kim, Y.R. Kim, Y.S. Kim, Y.S. Kim, J.U. Kim, J.M. Kim, K.R. Peck, H. Lee, M.D. Oh, S.H. Lee, W.K. Lee, S.H. Lee, M.H. Chung, S.I. Jung, H.J. Cheong, and W.S. Shin. 2006. Nationwide surveillance results of nosocomial infections along with antimicrobial resistance in intensive care units of sixteen university hospitals in Korea, 2004. Kor. J. Nosocomial Infect. Control. 11, 79-86
  20. Martin, N.I., H. Hu, M.M. Moake, J.J. Churey, R. Whittal, R.W. Worobo, and J.C. Vederas. 2003. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclyc peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 278, 13124-13132 https://doi.org/10.1074/jbc.M212364200
  21. Michael, A.G. 2000. Infection prevention and control unit and the division of infectious disease, department of medicine, the University Health Networt, University of Toronto, Ontario. Is methicillinresistant Staphylococcus aureus an emerging community pathogen? A review of the literature. Can. J. Infect. Dis. 11, 202-211 https://doi.org/10.1155/2000/424359
  22. Nagai, K., K. Kanigiri, N. Arao, K. Suzumura, Y. Kawano, M. Yamaoka, H. Zhang, H. Zhang, M. Watanabe, and K. Suzuki. 2003. Novel thiopeptide antibiotics produced by Bacillus cereus isolated from a marine sponge. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological properties. J. Antibiot (Tokyo). 56, 123-128 https://doi.org/10.7164/antibiotics.56.123
  23. Nakamura, L.K. 1984. Bacillus amylolyticus sp. nov., nom. rev., Bacillus lautus sp. nov., nom. rev., Bacillus pabuli sp. nov., nom. rev., and Bacillus validus sp. nov., nom. rev. Int. J. Syst. Bacteriol. 34, 224-226 https://doi.org/10.1099/00207713-34-2-224
  24. Nakamura, L.K. 1987. Bacillus alginolyticus sp. nov. and Bacillus chondroiinus sp. nov., two alginate-degrading species. Int. J. Syst. Bacteriol. 37, 284-286 https://doi.org/10.1099/00207713-37-3-284
  25. National Nosocomial Infections Surveillance System. 2004. National Nosocomial Infection Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control. 32, 470-485 https://doi.org/10.1016/j.ajic.2004.10.001
  26. Nielson, P. and J. Sorensen. 1997. Multi-target and mediumindependent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol. Ecol. 22, 183-192 https://doi.org/10.1111/j.1574-6941.1997.tb00370.x
  27. Noble, W.C., Z. Virani, and R.G.A Cree. 1992. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 72, 195-198
  28. Park, Y.J., J.S. Jeong, E.S. Park, E.S. Shin, S.H. Kim, and Y.S. Lee. 2007. Survey on the infection control of multidrug-resistant microorganisms in general hospitals in Korea. Kor. J. Nosocomial Infect Control. 12, 112-121
  29. Rollema, H.S., O.P. Kuipers, P. Both, W.M. De Vos, and R.J. Siezen. 1995. Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl. Environ. Microbiol. 61, 2873-2878
  30. Sambrook, J., E.F. Fritsch, and T. Mamiatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., USA
  31. Saravolatz, L.D., N. Markowitz, L. Arking, D. Pohlod, and E. Fisher. 1982 Methicillin-resistant Staphylococcus aureus Epidemicologic observations during a community-acquired outbreak. Ann. Intern. Med. 96, 11-16 https://doi.org/10.7326/0003-4819-96-1-11
  32. Selim, S., J. Negrel, C. Govaerts, S. Gianinazzi, and D. Van Tuinen. 2005. Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl. Environ. Microbiol. 71, 6501-6507 https://doi.org/10.1128/AEM.71.11.6501-6507.2005
  33. Slepecky, R.A. and H.E. Hemphill. 1991. The genus Bacillus-nonmedical. In The Prokaryotes, p. 1663-1696. In A. Balows, H.G. Truper, M. Dworkin, W. Harder, and K.H. Schleifer. Springer, New York, USA
  34. Song, J.H., J.W. Yang, J.H. Joung, S.J. Kang, and N.Y. Lee. 2000. Unique alterations in Penicillin-binding protein 2B of multidrugresistant Streptococcus pneumoniae from Korea. Kor. J. Infect. Dis. 32, 108-114
  35. Thomson, J.D., T.J. Gibso, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  36. Vijayakumar, E.K., J. Kenia, T. Mukhopadhyay, and S.R. Nadkarni. 1999. Methylsulfomycin I, a new cyclic peptide antibiotic from a Streptomyces sp. HIL Y-9420704. J. Nat. Prod. 62, 1562- 1564 https://doi.org/10.1021/np990088y
  37. Waksman, S.A. and A.T. Heinrich. 1943. The nomenclature and classification of the Actinomycetes. J. Bacteriol. 46, 337-341
  38. Wenzel, R.P. 1982. The emergence of methicillin-resistant Staphylococcus aureus. Ann. Intern. Med. 97, 440-442 https://doi.org/10.7326/0003-4819-97-3-440
  39. Yoon, Y.J., K.H. Im, Y.H. Koh, S.K. Kim, and J.W. Kim. 2003. Genotyping of six pathogenic Vibrio species based on RFLP of 16S rDNAs for rapid identification. J. Microbiol. 41, 312-319