Effects of a Soil-Born Paenibacillus spp. Strain KPB3 on Suppression of Bacterial Wilt Disease Caused by Ralstonia solanacearum

토양에서 분리한 Paenibacillus spp. KPB3의 Ralstonia solanacearum에 의한 세균성 풋마름병 억제 효과

  • Suk, Jung-Ki (Division of Bio-resources Technology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Ipper, Nagesh S. (Division of Bio-resources Technology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Lee, Seon-Hwa (Division of Bio-resources Technology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Shrestha, Anupama (Division of Bio-resources Technology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Park, Duck-Hwan (Division of Bio-resources Technology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Cho, Jun-Mo (Pioneer Co. Ltd., Kangwon National University) ;
  • Hur, Jang-Hyun (Division of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Kim, Byung-Sup (Department of Applied Plant Science, College of Life Science, Kangnung National University) ;
  • Lim, Chun-Keun (Division of Bio-resources Technology, College of Agriculture and Life Sciences, Kangwon National University)
  • 석정기 (강원대학교 농업생명과학대학 생물자원공학부) ;
  • ;
  • 이선화 (강원대학교 농업생명과학대학 생물자원공학부) ;
  • ;
  • 박덕환 (강원대학교 농업생명과학대학 생물자원공학부) ;
  • 조준모 (파이오니아(주)) ;
  • 허장현 (강원대학교 농업생명과학대학 생물환경학부) ;
  • 김병섭 (강릉대학교 생명과학대학 식물응용학과) ;
  • 임춘근 (강원대학교 농업생명과학대학 생물자원공학부)
  • Published : 2006.12.30

Abstract

Two hundred bacterial strains were isolated from the soil around healthy tomato plants in a polyvinyl house, where most of the other plants showed bacterial wilt symptoms. The strains were screened in vitro for their antibacterial activity. Among them, a strain, KPB3 showed strong bactericidal activity against bacterial wilt pathogen, Ralstonia solanacearum. The strain KPB3 was identified using physiological and biochemical tests, and 16S rRNA analyses. Based on these tests, the strain was found to be closer to genus Paenibacillus. To control the bacterial wilt caused by R. solanacearum, greenhouse experiments were conducted to determine the effectiveness of the Paenibacillus strain KPB3. Drench application of this strain ($4{\times}10^8$ CFU $mL^{-1}$) into the pots containing tomato plants, post-inoculated with the pathogen, R. solanacearum could drastically reduce the disease severity, compared to the non-treated plants. To evaluate effectiveness of this strain under field conditions, experiments were carried out in polyvinyl houses infested with R. solanacearum, during spring and autumn of the year 2006. It was observed that, during spring, bacterial wilt was more prevalent compared to the autumn. During spring, 50.9% disease incidences occurred in non-treated controls, while, Paenibacillus strain KPB3 treated plants showed 24.6% disease incidences. Similarly, during autumn, around 17.2% plants were infected with bacterial wilt in non- treated polyvinyl houses, compared to the Paenibacillus strain KPB3 treated plants, which showed 7.0% disease incidences. These results demonstrated that, Paenibacillus strain KPB3 is a potential biological control agent against bacterial wilt caused by R. solanacearum, effective under greenhouse as well as field conditions. This is the first report showing biocontrol of R. solanacearum using a Paenibacillus spp. under field conditions.

강원도 춘천시 신북읍의 토마토 풋마름병이 다발생한 포장으로부터 건전한 토마토 뿌리를 채취하여 약 200개의 미생물을 선발하였다. 선발된 미생물들에 대한 저지원 테스트를 실시한 결과, 풋마름병원균 (Ralstonia solanacearum)에 항균 효과를 나타냈으며 그 중 가장 우수한 항균 효과를 나타낸 KPB3 균주를 선발하여 생리 생화학적 특성조사 와 16S rRNA 유전자 분석을 실시하여 Paenibacillus spp. 균으로 동정하였다. KPB3균주의 활성적 우수성을 확인하기 위하여, 먼저 포트 실험에서 KPB3 균주를 토양 관주처리 결과 무처리구에 비하여 처리구의 방제효과가 66.7% 뛰어난 것을 확인하였다. 또한 토마토 포장에서의 방제효과 시험은 2006년 봄과 가을에 2회 실시하였으며, 전반적으로 풋마름병 발생은 가을보다 봄에 높은 발병율을 나타내었다. 그 결과, KPB3 균주 처리구에서 봄과 가을 각각 50%와 60% 이상 방제 효과를 나타내어 KPB3 균주는 토마토 풋마름병 억제용 생물 제제로서의 개발 가능성이 있음을 확인하였다.

Keywords

References

  1. Altschul, S. F., W. Gish, W. E. Miller, W. Myers, and D. J. Lipman (1990) Basic local alignment search tool. J. Molecular BioI. 215:403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Dalal, N. R., S. R. Dalal, V. G. Golliwar and R. I. Khobragade (1999) Studies on grading and prepackaging of some bacterial wilt resistant brinjal (Solanum melongena L.) varieties. J. Soils Crops 9:223-226
  3. Dong, C., X. Zeng, Q. Liu (1999) Biological control of tomato bacterial wilt with avirulent bacteriocinogenic strain of Ralstonia solanacearum. J. S. China Agric Univ. 20:1-4
  4. el Abdyal, M. S., el Sayed, A. R. el Shanshourie (1996) Effects of culture conditions on the antimicrobial activities of UV-mutants of Streptomyces corchorusii and S. spiroverticillatus against bean and banana wilt pathogens. Microbiol. Res. 151:201-211 https://doi.org/10.1016/S0944-5013(96)80045-0
  5. Hayward, A. C. (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87 https://doi.org/10.1146/annurev.py.29.090191.000433
  6. Kang, Y., G. Mao, C. Lu and L. He(1995) Biological control of bacterial wilt of tomato by extracellular protein defective mutants of Pseudomonas solanacearum. Acta Phytophylacica Sin. 22:287-288
  7. Katayama, K. and S. Kimura (1987) Ecology and protection of bacterial wilt of potato 2. Some control methods and their integration. Bull. Nagasaki Agric. For. Exp. Stn. 15:29-57
  8. Leach, J. E., F. F. White, M. L. Rhoads, and H. Leung (1990) A repetitive DNA sequence differentiates Xanthomonas campestris pv. oryzae from other pathovars of X. campestris. Mol. Plant-Microbe Interact. 3:238-246 https://doi.org/10.1094/MPMI-3-238
  9. McGarvey, J. A., T. P. Denny and M. A. Schell (1999) Spatial-temporal and quantitative analysis of growth and EPSI production by Ralstonia solanacearum in resistant and susceptible tomato cultivars. Phytopathology 89: 1233-1239 https://doi.org/10.1094/PHYTO.1999.89.12.1233
  10. Owen, R. J. and P. Borman (1987) A rapid biochemical method for purifying high molecular weight bacterial chromosomal DNA for restriction enzyme analysis. Nucleic Acids Res. 15:3631 https://doi.org/10.1093/nar/15.8.3631
  11. P. Ji., M. T. Momol, S. M. Olson and P. M. Pradhanang (2005) Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Disease 85:9, 497-500
  12. Perry, S. F. (1995) Freeze drying and cryopreservation of bacteria. In: Methods in molecular biology. J. G. Day and M. R. Mclellan (eds.) Humana Press Inc. 21-30
  13. Sung, P. J., J. K. Shin, H. B. Cho, and S. D. Kim (2005) Isolation, identification and Biological control activity of SKU-78 strain against Ralstonia solanacearum. J. Korean Soc. Appl. BioI. Chem. 48:1, 48-52
  14. Vincent, V. M. and T. W. Mew (1998) Effect of a soil amendment on the survival of Ralstonia solanacearumin different soils. Phytopathology 88, 300-305 https://doi.org/10.1094/PHYTO.1998.88.4.300
  15. Weisburg, W. G., S. M. Barns, D. A. Pelletier and D. J. Lane, (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703 https://doi.org/10.1128/jb.173.2.697-703.1991