• Title/Summary/Keyword: Packaging function

Search Result 167, Processing Time 0.025 seconds

Designing Modified Atmosphere Packaging for Persimmon (Diospyros kaki cv. Fuyu) Fruit Based on Respiration Modelling (단감의 최적 Modified Atmosphere포장 규격 설정)

  • Ahn, Gwang-Hwan;Choi, Seong-Jin;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.2
    • /
    • pp.67-73
    • /
    • 2007
  • A respiration rate analysed by enzyme kinetics-based respiration model and gas permeability data of LDPE film were applied to design the optical modified atmosphere (MA) packaging condition of persimmon (Diospyros kaki cv. Fuyu) fruits. The fruit quality rapidly decreases due to physiology disorder such as softening and peel blackening. $O_2$ permeance ($Q_{O2}$ in $ml{\cdot}hr^{-1}{\cdot}atm^{-1}{\cdot}m^{-2}$) and $CO_2$ performance ($Q_{CO2}$ in $ml{\cdot}hr^{-1}{\cdot}atm^{-1}{\cdot}m^{-2}$) of low density polyethylene (LDPE) film samples were measured at $0^{\circ}C$ and described as function of thickness (L in ${\mu}m$) as $Q_{O2}=(2540{\times}1/L)-16$, and $Q_{CO2}=(13742{\times}1/L)-70$, respectively. MA package containing single persimmon fruit of 225g was designed and tested experimentally at $0^{\circ}C$ by using LDPE films. Package atmospheres predicted from the relationship of $O_2$, $CO_2$ and $N_2$ balances on the packages was in good agreement with those obtained experimentally. Physiology disorder occurrence was the lowest at 52 ${\mu}m$ package that attained optimum gas condition ($O_2$ 2.8% and $CO_2$ 5.4%). The computer simulation was found to be effective to help to design the optimum MA packaging condition of individual persimmon fruit.

  • PDF

Preparation and Characterization of Sodium Caseinate Coated Papers with Bentonite (벤토나이트를 첨가한 카제인나트륨 기반 코팅지 제조 및 특성 연구)

  • Jihyeon Hwang;Jeonghyeon Lee;Jeyoung Jung;Jin Kie Shim;Dowan Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • This study reports on the preparation of sodium caseinate-cardanol (CasNa/CL)-based papers coated with different amounts of bentonite (BN) for use as a sustainable packaging material. Their chemical and morphological structures, mechanical properties, water vapor permeability, surface properties, and antioxidant activity of coated papers was assessed as a function of the BN content. The drying of the CasNa/CL coated papers led to the formation of pinholes on their surfaces owing to the presence of trapped water resulting from the difference in the drying rate between the external surface and the inside of the coated layers. Increasing the BN content reduced the pinholes on surface of CasNa/CL/BN coated papers and highly decreased the water vapor transmittance rate of the papers from 387.3±1.9 g/m2·day to 269.25±4.5 g/m2·day. Free radical scavenging assays indicated the addition of CL to the CasNa exhibited the antioxidant activity and antioxidant activity of CasNa/CL/BN did not changed as increase of BN contents. The improved water vapor barrier property and antioxidant activity of CasNa/CL/BN coated papers can be promised for various packaging applications.

A Study on the Control of Hygroscopicity and Hardness in Polymer Surfaces (고분자 표면의 흡습성 및 경도 제어 연구)

  • Jinil Kim;Young Nam Jung;Doa Kim;Myung Yung Jeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.86-90
    • /
    • 2023
  • The packaging of electronic devices performs a protective function to ensure that their durability and reliability are not affected by changes in the operating environment caused by external factors. Recent advances in materials have led to ongoing research into bonded packaging of heterogeneous materials such as polymers and inorganic materials in electronic devices. In this packaging process, it is important to have a binding that joins the materials and ensures the operating environment, which includes adhesion to the substrate, corrosion and oxidation resistance through moisture removal, and durability. In this study, the hygroscopicity of the coating layer by modifying the polymer surface based on PVA was evaluated by controlling and measuring the contact angle, and the adhesion was confirmed by applying water-based ink and testing according to ASTM_D3363. For the durability of the polymer surface, the IPL post-treatment process was used to improve the hardness and toughness against applied voltage, and the pencil hardness test and nanoindentation test were conducted. Through this, we analyzed and proposed solutions to ensure the reliability and durability of polymer devices in polymer microfabrication against environmental factors such as moisture, temperature fluctuations and adhesion, and surface abrasion.

An Equaivalent Circuit Model for Rquantum Well Laser Diodes (양자우물 레이저 다이오드의 등가회로 모델)

  • 이승우;김대욱;최우영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.49-58
    • /
    • 1998
  • In this paper, a new equivalent circuit model for quantum-well laser diode (LD) is proposed. The model includes carrier transport effects in the SCH region, and rprovides, in a stable and accurate manner, large-and small-signal responses of laser diode output power as function of injected currents. SPICE simulation was performed using the circuit model and results are presented for L-I characteristics, pulse and frequency responses under various conditions. It is expencted that the new equaivalent circuit model will find useful applications for designing and analyzing OEIC, LD driver circuits, and LD packaging.

  • PDF

Flow Properties of Liquid Epoxy Compounds as a Function of Filler Fraction for the Underfill (Underfill용 액상 Epoxy Compound의 Filler 충진에 따른 Flow특성 연구)

  • 김원호;황영훈;배종우;정혜욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2000
  • To develop the underfill materials which are required for the new process of semi-conductor industry, the properties of epoxy/anhydride/cobalt(II) catalyst system with two types of fused silica(1 $\mu\textrm{m}$, 8 $\mu\textrm{m}$) are studied as a function of filler fraction. According to the curing profile, the optimum catalyst amount was 1.0 wt% for full curing at the conditions of $160^{\circ}C$/l5 min., and we could conclude that the viscosity has superior effect on the real flaw through the relationship between surface tension and viscosity data. The underfills which were filled with 1 $\mu\textrm{m}$ fused silica did not show good flowability, but they should be useful by improving the viscosity for a future process which has small gaps. The underfills which were filled with 8 $\mu\textrm{m}$ fused silica showed good flowability when the filler contents were 55~60 vol%. The model which was referred by Matthew can predict the real flow length only when the underfill has high viscosity and low surface tension.

  • PDF

Evaluation of Flexural Strength of Silicon Die with Thickness by 4 Point Bending Test (4점굽힘시험에 의한 실리콘 다이의 두께에 따른 파단강도 평가)

  • Min, Yoon-Ki;Byeon, Jai-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In this study, flexural strength and fracture behavior of silicon die from single crystalline silicon wafer were investigated as a function of thickness. Silicon wafers with various thickness of 300, 200, 180, 160, 150, and 100 ${\mu}m$ were prepared by mechanical grinding and polishing of as-saw wafers. Flexural strength of 40 silicon dies (size: 62.5 mm${\times}$4 mm) from each wafer was measured by four point bending test, respectively. For statistical analysis of flexural strength, shape factor(i.e., Weibull modulus) and scale factor were determined from Weibull plot. Flexural strength reflecting both statistical fracture probability and size (thickness) effect of brittle silicon die was obtained as a linear function of die thickness. Fracture appearance was discussed in relation with measured fracture strength.

A Study on the antibiotic properties of plastic containers templated with antibiotic functional information (항균기능정보가 각인된 플라스틱 저장용기의 항균 특성에 관한 연구)

  • Bahng, Gun-Woong;Kim, Kang-Nyung;Kim, Hee-Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.2
    • /
    • pp.31-37
    • /
    • 1999
  • To enhance antibiotic function of plastic containers, many methods have been applied. Most of the methods utilize antibiotic properties of antibiotic substances such as silver containing chemicals. Sometimes antibiotic substances are used without long term stability test as food container additives. Basically, this kind of methods is not safe since it is based on the antibiotic properties of the material itself and hence direct contact between food and container additives is unavoidable to obtain antibiotic effect. In this paper, a new concept of information templation was applied to make food containers with antibiotic function. It has been known recently that water memorize informations and this information could be tempelated to other materials through appropriate methods. One of the participating company developed this method to template informations onto plastic materials. Food containers were produced using this plastic chips and experimental results showed that antibiotic functional information temptation method is effective for practical application. Results and discussions are reported in this paper.

  • PDF

Prediction of Color Reproduction using the Scattering and Absorption Coefficients derived from the Kubelka-Munk model in Package Printing (패키지 인쇄에 있어서 Kubelka-Munk Model 유래의 산란 및 흡수 계수를 이용한 색상 재현성 예측)

  • Hyun, Young-joo;Park, Jae-sang;Tae, Hyun-chul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.203-210
    • /
    • 2021
  • With the development of package printing technology, the package has expanded from the basic function of protecting products to the marketing function through package design. Color, the visual element that composes the package design, is delivered to the consumer most quickly and effectively. As color marketing of these package designs expands, accurate color reproduction that the product wants to express is becoming more important. The color of an object is transmitted by absorption and scattering of light. Spectral reflectance refers to the intensity of light reflected by an object at different wavelengths by the spectral effect. As a result, the color of the object is expressed in various colors. Packaged printing inks have their own absorption and scattering coefficients, and the Kubelka-Munk model for color reproduction and prediction defines the relationship between these correlation coefficients through reflectance. In the Kubelka-Munk model for color reproduction and prediction, the relationship between the absorption and scattering coefficients (K/S) of printed material is predicted as the sum of the K/S values according to the mixing ratio of all color ink used. In this study, the reflectance of the measured print is reversely calculated at the mixing ratio of print ink using the Kubelka-Munk model. Through this, the relationship value of the ink-specific absorption/scattering coefficient constituting the final printed material is predicted. Delta E is derived through the predicted reflectance, and the similarity between the measured value and the predicted value is confirmed.

Electrospun Magnetic Nanofiber as Multifunctional Flexible EMI-Shielding Layer and its Optimization on the Effectiveness

  • Yu, Jiwoo;Nam, Dae-Hyun;Lee, Young-Joo;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.57-63
    • /
    • 2016
  • We developed a flexible and micro-thick electromagnetic interference (EMI) shielding nanofabric layer that also functions as a water resisting and heat sinking material. Electrospinning followed by a simple heat treatment process was carried on to produce the EMI-shielding Ni/C hybrid nanofibers. The ambient oxygen partial pressure ($pO_2$ = 0.1, 0.7, 1.3 Torr) applied during the heat treatment was varied in order to optimize the effectiveness of EMI-shielding by modifying the size and crystallinity of the magnetic Ni nanoparticles distributed throughout the C nanofibers. Permittivity and permeability of the nanofibers under the electromagnetic (EM) wave frequency range of 300 MHz~1 GHz were measured, which implied the EMI-shielding effectiveness (SE) optimization at $pO_2$ = 0.7 Torr during the heat treatment. The materials' heat diffusivity for both in-plane direction and vertical direction was measured to confirm the anisotropic thermal diffusivity that can effectively deliver and sink the local heat produced during device operations. Also, the nanofibers were aged at room temperature in oxygen ambient for water resisting function.

A Study of Hygroscopic Moisture Diffusion Analysis in Multimaterial System (이종 소재 접합체의 흡습 질량 확산 해석)

  • Kim, Yong-Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.11-15
    • /
    • 2011
  • Heat transfer equation is first reviewed and then governing equation of moisture diffusion. Analogy scheme is applied to analysis the moisture absorption problem of polymers. It make possible to numerically analyze the diffusion problem for single medium by using commercial finite element code if it is under the isothermal loading condition. It is extended to special multimaterial system by introducing pressure ratio function, whose moisture characteristics of materials are proportional to temperature only. The weight changes of silicon-nonconductive-polymer joint model due to moisture absorption is measured and been very close to the numerical results as for single media with boundary condition with zero concentration, but yields numerical errors as for multisystem media.