DOI QR코드

DOI QR Code

Preparation and Characterization of Sodium Caseinate Coated Papers with Bentonite

벤토나이트를 첨가한 카제인나트륨 기반 코팅지 제조 및 특성 연구

  • Jihyeon Hwang (Department of Marine Bio Food Science, College of Life Science, Gangneung-Wonju National University) ;
  • Jeonghyeon Lee (Department of Marine Bio Food Science, College of Life Science, Gangneung-Wonju National University) ;
  • Jeyoung Jung (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Jin Kie Shim (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Dowan Kim (Department of Marine Bio Food Science, College of Life Science, Gangneung-Wonju National University)
  • 황지현 (강릉원주대학교, 생명과학대학, 해양바이오식품학과) ;
  • 이정현 (강릉원주대학교, 생명과학대학, 해양바이오식품학과) ;
  • 정제영 (한국생산기술연구원, 패키징기술센터) ;
  • 심진기 (한국생산기술연구원, 패키징기술센터) ;
  • 김도완 (강릉원주대학교, 생명과학대학, 해양바이오식품학과)
  • Received : 2023.03.20
  • Accepted : 2023.04.05
  • Published : 2023.04.30

Abstract

This study reports on the preparation of sodium caseinate-cardanol (CasNa/CL)-based papers coated with different amounts of bentonite (BN) for use as a sustainable packaging material. Their chemical and morphological structures, mechanical properties, water vapor permeability, surface properties, and antioxidant activity of coated papers was assessed as a function of the BN content. The drying of the CasNa/CL coated papers led to the formation of pinholes on their surfaces owing to the presence of trapped water resulting from the difference in the drying rate between the external surface and the inside of the coated layers. Increasing the BN content reduced the pinholes on surface of CasNa/CL/BN coated papers and highly decreased the water vapor transmittance rate of the papers from 387.3±1.9 g/m2·day to 269.25±4.5 g/m2·day. Free radical scavenging assays indicated the addition of CL to the CasNa exhibited the antioxidant activity and antioxidant activity of CasNa/CL/BN did not changed as increase of BN contents. The improved water vapor barrier property and antioxidant activity of CasNa/CL/BN coated papers can be promised for various packaging applications.

본 연구에서는 CasNa/CL의 물리적 특성을 개선하기 위하여 BN을 충진제로 활용하여 CasNa/CL/BN코팅제 및 코팅지들을 제조하였다. BN의 함량변화에 따라 제조한 CasNa/CL코팅지와 CasNa/CL/BN코팅지들의 화학적 및 형태학적 특성을 분석하였고, 기계적강도, 수증기차단특성, 표면특성, 항산화특성에 대한 분석을 통해 포장소재로써 적용 가능성을 확인하였다. SEM분석결과, CasNa/CL코팅지 표면에서 핀홀 현상이 발생하는 것을 확인하였다. 하지만, BN함량이 증가함에 따라 핀홀 현상은 감소되는 경향을 보였고 표면거칠기는 증가되는 경향을 확인할 수 있었다. BN 함량이 증가함에 따라 CasNa/CL/BN코팅지들의 연신률 및 수증기차단성이 개선되는 것을 확인할 수 있었다. BN함량 증가에도 불구하고 CasNa/CL/BN코팅지들의 항산화특성은 CasNa/CL코팅지와 유사한 경향을 보임을 확인하였다. 자연유래소재인 CasNa, CL 및 BN을 활용한 코팅지의 경우 친환경 포장소재로써 활용이 가능할 것으로 판단되지만, CL 및 BN과 CasNa와의 혼화성 및 분산성 개선 방안에 대한 추가적인 연구가 필요함을 확인하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단(No.2020R1G1A1101282)과 2021년도 식품의약품안전처의 연구개발비(21162식품위014)의 지원을 받아 수행되었으며 이에 감사드립니다.

References

  1. Aghajani-Memar, S., Mohammadkazemi, F., Kermanian, H. and Hamedi, S. 2022. Synergistic effect of bacterial cellulose and halloysite nanotubes on the properties of the sodium caseinate-based nanobiocomposites. Appl. Clay Sci. 222: 106493.
  2. Picchio, M.L., Linck, Y.G., Monti, G.A., Gugliotta, L.M., Minari, R.J. and Igarzabal, C.I.A. 2018. Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocoll. 84: 424-434. https://doi.org/10.1016/j.foodhyd.2018.06.028
  3. Liu, K., Xu, X., Liu, H., Liu, Z., Zhao, K., Ma, Y. and Zhang, K. 2021. Mechanical properties and water sensitivity of soybean protein isolate film improved by incorporation of sodium caseinate and transglutaminase. Prog. Org. Coat. 153: 106154.
  4. Kansal, D., Hamdani, S.S., Ping, R., Sirinakbumrung, N. and Rabnawaz, M. 2020. Food-safe chitosan-zein dual-layer coating for water- and oil-repellent paper substrates. ACS Sustain. Chem. Eng. 8: 6887-6897. https://doi.org/10.1021/acssuschemeng.0c02216
  5. Hwang, J. and Kim, D. 2022. Preparation and characterization of sodium caseinate (CasNa)/transglutaminase (TG)-coated papers for packaging. Korean J. Packag. Sci. Tech. 28: 81-87. https://doi.org/10.20909/kopast.2022.28.2.81
  6. Zhang, W., Xiao, H. and Qian, L. 2014. Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax. Carbohydr. Polym. 101: 401-406. https://doi.org/10.1016/j.carbpol.2013.09.097
  7. Rastogi, V.K. and Samyn, P. 2015. Bio-based coatings for paper applications. Coatings. 5: 887-930. https://doi.org/10.3390/coatings5040887
  8. Kim, D. and Hwang, J. 2023. Preparation and characterization of sodium caseinate-coated papers based on glycerol and sorbitol contents for packaging application. Foods. 12: 940.
  9. Chambi, H. and Grosso, C. 2006. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Res. Int. 39: 458-466. https://doi.org/10.1016/j.foodres.2005.09.009
  10. Li, X., Nie, X., Chen, J. and Wang, Y. 2019. Preparation of epoxidized cardanol butyl ether as a novel renewable plasticizer and its application for poly(vinyl chloride). Polym. Int. 66: 337-491.
  11. Mele, G., Bloise, E., Cosentino, F., Lomonaco, D., Avelino, F., Marciano, T., Massaro, C., Mazzetto, S. E., Tammaro, L., Scalone, A. G., Schioppa, M. and Terzi, R. 2019. Influence of cardanol oil on the properties of poly(lactic acid) films produced by melt extrusion. ACS Omega. 4: 718-726. https://doi.org/10.1021/acsomega.8b02880
  12. Liang, H., Long, Z., Yang, S. and Dai, L. 2015. Organic modification of bentonite and its effect on rheological properties of paper coating. Appl. Clay Sci.104: 106-109. https://doi.org/10.1016/j.clay.2014.11.015
  13. Ham, M., Kim, J-C. and Chang, J-H. 2013. Characterization of poly(vinyl alcohol) nanocomposite films with various clays. Polymer. 37: 225-231. https://doi.org/10.7317/pk.2013.37.2.225
  14. Sapalidis, A.A., Katsaros, F.K. Steriotis, T.A. and Kanellopoulos, N.K. 2011. Properties of poly(vinyl alcohol)-bentonite clay nanocomposite films in relation to polymer-clay interactions. J. Appl. Polym. 123: 1812-1821. https://doi.org/10.1002/app.34651
  15. KS M ISO 1924-2:2008, Paper and board-determination of tensile properties-Part 2: Constant rate of elongation method (20 mm/min).
  16. Kim, D., Kim, I., Seo, J. and Seo, J. 2012. Preparation of polyurushiol (PUOH) using urushiol and property of LDPE/PUOH composite films. Appl. Chem. Eng. 23: 546-553.
  17. Chen, S., Wei, X., Sui, Z., Guo, M., Geng, J., Xiao, J. and Huang, D. 2021. Preparation of antioxidant and antibacterial chitosan film from Periplaneta Americana. Insects. 12: 53.
  18. Pereda, M., Amica, G., Racz, I. and Marcovich, N.E. 2011. Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J. Food Eng. 103: 76-83. https://doi.org/10.1016/j.jfoodeng.2010.10.001
  19. Saberi-Rise, R. and Moradi-Pour, M. 2020. The effect of Bacillus subtilis Vru1 encapsulated in alginate-bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol. 152: 1089-1097. https://doi.org/10.1016/j.ijbiomac.2019.10.197
  20. Koosha, M. and Hamedi, S. 2019. Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Prog. Org. Coat. 127: 338-347. https://doi.org/10.1016/j.porgcoat.2018.11.028
  21. Azevedo, V.M., Dias, M.V., Borges, S.V. Costa, A.L.R., Silva, E.K., Medeiros, E.A.A. and Soares, N.D.F.F. 2015. Development of whey protein isolate bio-nanocomposites: Effect of montmorillonite and citric acid on structure, thermal, morphological and mechanical properties. Food Hydrocoll. 48: 179-188. https://doi.org/10.1016/j.foodhyd.2015.02.014
  22. Rhim, J-W., Lee, J-H. and Kwak, H-S. 2005. Mechanical and water barrier properties of soy protein and clay mineral composite films. Food Sci. Biotechnol. 14: 112-116.
  23. Islam, H.B.M.Z. and Susan, M.A.B.H.M. 2020. Effects of plasticizers and clays on the physical, chemical, mechanical, thermal, and morphological properties of potato starch-based nanocomposite films. ACS Omega. 5: 17543-17552. https://doi.org/10.1021/acsomega.0c02012
  24. Cho, S.K., Cho, T.Y., Ham, D.S., Lee, S.J. and Lee, J.H. 2016. Gas permeation mechanism and technical trend for high shielding properties of plastic films. J. Adhes. Interface. 17: 155-162.
  25. Akhila, V. and Badwaik, L.S. 2022. Recent advancement in improvement of properties of polysaccharides and proteins based packaging film with added nanoparticles: A review. Int. J. Biol. Macromol. 203: 515-525. https://doi.org/10.1016/j.ijbiomac.2022.01.181
  26. Dogaru, B-I., Simionescu, B. and Popescu, M-C. 2020. Synthesis and characterization of κ-carrageenan bio-nanocomposite films reinforced with bentonite nanoclay. Int. J. Biol. Macromol. 154: 9-17. https://doi.org/10.1016/j.ijbiomac.2020.03.088
  27. Maia, F.J.N., Ribeiro, F.W.P., Rangel, J.H.G., Lomonaco, D., Luna, F.M.T., Lima-Neto, P.D. Correia, A.N., and Mazzetto, S.E. 2015. Evaluation of antioxidant action by electrochemical and accelerated oxidation experiments of phenolic compounds derived from cashew nut shell liquid. Ind. Crops Prod. 67: 281-286. https://doi.org/10.1016/j.indcrop.2015.01.034