• Title/Summary/Keyword: Package materials

Search Result 625, Processing Time 0.03 seconds

An Exploratory Study on Package Design Strategy for Activating Energy Drink Market (에너지음료 시장 활성화를 위한 패키지디자인 전략에 관한 탐색적 연구)

  • Lee, Ho-Se
    • Industry Promotion Research
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 2017
  • This study is an exploratory study on the package design research strategy for the activation of the energy drink market. We analyzed the case study of energy drinks and the preference of energy beverage package design which are being sold in Korea and overseas from Oct. 24 to 28, 2016. The results of this study are as follows: First, preference is given to two colors, blue and red, regarding the color of package design of energy drinks. In particular, blue was the most preferred at 62.8%, and the reason for choosing color was the image that reminds me of energy drinks, and it was highly visible. Second, most preference of energy drinks for packaging material was selected from can and glass materials, and most preferred for can. Third, preference for calligraphy was found to be due to the dynamic images of energy drink preferring rough images. Fourth, package design awareness focused on overall image rather than one factor. The limitations of the study are the research subjects only to university students in Daejeon and Chungnam area. In the future, it will be necessary to classify the overall elements of package design and various research subjects, and to study the major consumption and consumption areas of energy drinks. In this study, it is implied that the design of the package needs a package design strategy in accordance with the overall product image, rather than focusing on one factor.

Numerical Analysis of Warpage and Stress for 4-layer Stacked FBGA Package (4개의 칩이 적층된 FBGA 패키지의 휨 현상 및 응력 특성에 관한 연구)

  • Kim, Kyoung-Ho;Lee, Hyouk;Jeong, Jin-Wook;Kim, Ju-Hyung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.7-15
    • /
    • 2012
  • Semiconductor packages are increasingly moving toward miniaturization, lighter and multi-functions for mobile application, which requires highly integrated multi-stack package. To meet the industrial demand, the package and silicon chip become thinner, and ultra-thin packages will show serious reliability problems such as warpage, crack and other failures. These problems are mainly caused by the mismatch of various package materials and geometric dimensions. In this study we perform the numerical analysis of the warpage deformation and thermal stress of 4-layer stacked FBGA package after EMC molding and reflow process, respectively. After EMC molding and reflow process, the package exhibits the different warpage characteristics due to the temperature-dependent material properties. Key material properties which affect the warpage of package are investigated such as the elastic moduli and CTEs of EMC and PCB. It is found that CTE of EMC material is the dominant factor which controls the warpage. The results of RSM optimization of the material properties demonstrate that warpage can be reduced by $28{\mu}m$. As the silicon die becomes thinner, the maximum stress of each die is increased. In particular, the stress of the top die is substantially increased at the outer edge of the die. This stress concentration will lead to the failure of the package. Therefore, proper selection of package material and structural design are essential for the ultra-thin die packages.

Analysis on Effective Elastic Modulus and Deformation Behavior of a Stiffness-Gradient Stretchable Electronic Package with the Island-Bridge Structure (Island-Bridge 구조의 강성도 경사형 신축 전자패키지의 유효 탄성계수 및 변형거동 분석)

  • Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.39-46
    • /
    • 2019
  • A stiffness-gradient soft PDMS/hard PDMS/FPCB stretchable package of the island-bridge structure was processed using the polydimethylsiloxane (PDMS) as the base substrate and the more stiff flexible printed circuit board (FPCB) as the island substrate, and its effective elastic modulus and stretchable deformation characteristics were analyzed. With the elastic moduli of the soft PDMS, hard PDMS, and FPCB to be 0.28 MPa, 1.74 MPa, and 1.85 GPa, respectively, the effective elastic modulus of the soft PDMS/hard PDMS/FPCB package was analyzed as 0.58 MPa. When the soft PDMS of the soft PDMS/hard PDMS/FPCB package was stretched to a tensile strain of 0.3, the strains occurring at hard PDMS and FPCB were found to be 0.1 and 0.003, respectively.

Numerical Study on Package Warpage as Structure Modeling Method of Materials for a PCB of Semiconductor Package (반도체 패키지용 PCB의 구조 모델링 방법에 따른 패키지의 warpage 수치적 연구)

  • Cho, Seunghyun;Ceon, Hyunchan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.59-66
    • /
    • 2018
  • In this paper, we analyzed the usefulness of single-structured printed circuit board (PCB) modeling by using numerical analysis to model the PCB structure applied to a package for semiconductor purposes and applying modeling assuming a single structure. PCBs with circuit layer of 3rd and 4th were used for analysis. In addition, measurements were made on actual products to obtain material characteristics of a single structure PCB. The analysis results showed that if the PCB was modeled in a single structure compared to a multi-layered structure, the warpage analysis results resulting from modeling the PCB structure would increase and there would be a significant difference. In addition, as the circuit layer of the PCB increased, the mechanical properties of the PCB, the elastic coefficient and inertia moment of the PCB increased, decreasing the package's warpage.

Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation (열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석)

  • Byun, Sangwon;Kim, Youngshin;Jeon, Euy sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

A Study on the Surface Patterns and Bonding Characteristics of Exposed Materials based on Wheel Grit Size during Package Grinding (패키지 연삭 시 휠 입도에 따른 노출된 가공물의 표면 양상과 접합 특성 연구)

  • Jin Park;Seojun Bae;Kwangil Kim;Jinho Lee;Sanggyu Jang;Yong-Nam Koh
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.72-79
    • /
    • 2024
  • To realize high speed and high bandwidth in the 2.xD package structure, methods requiring high technology are being studied for processes such as interposer or bridge die bonding, as well as heterogeneous chip bonding. Particularly, the grinding process of bonding surfaces is considered a key technology. The method of bonding an interposer or bridge die including Cu layers to a substrate and then exposing metallic materials such as Cu, which can be electrically connected, through a grinding process to connect heterogeneous chips is an approach that utilizes conventional packaging techniques. However, to meet the yield and quality standards required for mass production in processes involving the large-scale bonding of micro-bumps, as seen in 2.xD packages, it is essential to develop techniques based on high precision. This paper investigates the multi-material grinding process for heterogeneous chip bonding in a 2.xD package structure, using the grit size of the grinding wheel as a variable. The study examines the surface patterns and bonding characteristics of the exposed materials achieved through the grinding process. Through this study, we aim to optimize the grinding process for high-quality bonding, thereby contributing to the development of advanced packaging technologies.

LTCC/LTCC-M Technologies for Packaging and Module Fabrication

  • Moon, Je-Do
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.33-49
    • /
    • 2002
  • $\Box$ LTCC/LTCC-M technologies are a cost-effective SOP technology $\Box$ LTCC/LTCC-M materials have good RF characteristics and the materials can be used as excellent substrates for high band width applications $\Box$ Reliability of LTCC/LTCC-M package or module can be greatly improved by embedded passive technology and CTE control of the substrates $\Box$ To expand the application area, more development is needed in realization of embedded passives with tight tolerance

  • PDF

A Study on the Microdefect Detection of Semiconductor Package by Digital Ultrasonic Image Processing (디지탈 초음파 화상처리에 의한 반도체 패키지의 미소결함 검출에 관한 연구)

  • Kim, J.Y.;Han, E.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.2
    • /
    • pp.43-49
    • /
    • 1990
  • Ultrasonic testing is one of the most useful NDT method for detection of microdefect in the opaque materials. Recently, many applications of the ultrasonic techniques have been extended widely in the new field like electron is and advanced materials. From the result of the experiment, we have hardly found out a crack in the internal parts of the resin and a delamination between chip and resin because of poor performance of the system.

  • PDF

Low Temperature Flip Chip Bonding Process

  • Kim, Young-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.253-257
    • /
    • 2003
  • The low temperature flip chip technique is applied to the package of the temperature-sensitive devices for LCD systems and image sensors since the high temperature process degrades the polymer materials in their devices. We will introduce the various low temperature flip chip bonding techniques; a conventional flip chip technique using eutectic Bi-Sn (mp: $138^{\circ}C$) or eutectic In-Ag (mp: $141^{\circ}C$) solders, a direct bump-to-bump bonding technique using solder bumps, and a low temperature bonding technique using low temperature solder pads.

  • PDF

A NOVEL BGA PACKAGE FOR RF APPLICATIONS

  • Degani, Y.;Dudderar, T.D.;Frye, R.C.;Gregus, J.A.;Jacala, J.;Kossives, D.;Lau, M.Y.;Low, Y.;Smith, P.R.;Tai, K.L.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.96.3-96
    • /
    • 1998
  • PDF