• 제목/요약/키워드: PMOS reset

검색결과 4건 처리시간 0.017초

넓은 동적 범위를 가지는 CMOS Image Sensors OFD(Over Flow Drain) 픽셀 설계 (OFD(Over Flow Drain) pixel architecture design of the CIS which has wide dynamic range with a CMOS process)

  • 김진수;권보민;정진우;박주홍;김종민;이제원;김남태;송한정
    • 센서학회지
    • /
    • 제18권1호
    • /
    • pp.77-85
    • /
    • 2009
  • We propose a new image pixel architecture which has OFD(Over Flow Device) node by improving conventional 3TR pixel structure. Newly designed pixel consists of photo diode which is verified with HSPICE simulation, PMOS reset transistor, several NMOS and several PMOS transistors. Photodiode signals from each PMOS and NMOS are detected by Reset PMOS. These output signals give enough chances to detect wide operation coverage because OFD node has overflow photocurrent. According to various light intensity, we analyzed characteristic of the output voltage with a SPICE tool. Proposed pixel output has specific value which can detect possible from $0.1{\mu}W/cm^2$ to $10W/cm^2$ light intensity. It has wide-dynamic range of 160 dB.

상보형 신호경로 방식의 CMOS 이미지 센서 픽셀의 하드웨어 구현 (Hardware implementation of a CMOS image sensor pixel using complemental signal path)

  • 정진우;권보민;김지만;박주홍;박용수;이제원;송한정
    • 센서학회지
    • /
    • 제18권6호
    • /
    • pp.475-484
    • /
    • 2009
  • In this paper, an analysis of the complementary CMOS active pixel and readout circuit is carried out. Complementary pixel structure which is different from conventional 3TR APS structure consists of photo diode, reset PMOS, several NMOSs and PMOSs sets for complementary signals. Proposed CMOS image sensors pixel has been fabricated using 0.5 standard CMOS process. Measured results show that the output signal range is from 0.8 V to 3.8 V. This output signal range increased 125 % compared to conventional 3TR pixel in the condition of 5 V power supply.

상보형 신호경로 방식의 CMOS 이미지센서 픽셀 모델링 및 HSPICE 해석 (Modeling and HSPICE analysis of the CMOS image sensor pixel with the complementary signal path)

  • 김진수;정진우;강명훈;노호섭;김종민;이제원;송한정
    • 센서학회지
    • /
    • 제17권1호
    • /
    • pp.41-52
    • /
    • 2008
  • In this paper, a circuit analysis of the complementary CMOS active pixel and readout circuit is carried out. Complementary pixel structure which is different from conventional 3TR APS structure is consist of photo diode, reset PMOS, several NMOSs and PMOSs sets for complementary signals. Photo diode is modelled with Medici device program. HSPICE was used to analyze the variation of the signal feature depending on light intensity using $0.5{\mu}M$ standard CMOS process. Simulation results show that the output signal range is from 0.8 V to 4.5 V. This signal range increased 135 % output dynamic range compared to conventional 3TR pixel in the condition of 5 V power supply.

Core Circuit Technologies for PN-Diode-Cell PRAM

  • Kang, Hee-Bok;Hong, Suk-Kyoung;Hong, Sung-Joo;Sung, Man-Young;Choi, Bok-Gil;Chung, Jin-Yong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권2호
    • /
    • pp.128-133
    • /
    • 2008
  • Phase-change random access memory (PRAM) chip cell phase of amorphous state is rapidly changed to crystal state above 160 Celsius degree within several seconds during Infrared (IR) reflow. Thus, on-board programming method is considered for PRAM chip programming. We demonstrated the functional 512Mb PRAM with 90nm technology using several novel core circuits, such as metal-2 line based global row decoding scheme, PN-diode cells based BL discharge (BLDIS) scheme, and PMOS switch based column decoding scheme. The reverse-state standby current of each PRAM cell is near 10 pA range. The total leak current of 512Mb PRAM chip in standby mode on discharging state can be more than 5 mA. Thus in the proposed BLDIS control, all bitlines (BLs) are in floating state in standby mode, then in active mode, the activated BLs are discharged to low level in the early timing of the active period by the short pulse BLDIS control timing operation. In the conventional sense amplifier, the simultaneous switching activation timing operation invokes the large coupling noise between the VSAREF node and the inner amplification nodes of the sense amplifiers. The coupling noise at VSAREF degrades the sensing voltage margin of the conventional sense amplifier. The merit of the proposed sense amplifier is almost removing the coupling noise at VSAREF from sharing with other sense amplifiers.