• Title/Summary/Keyword: PLlF

Search Result 38, Processing Time 0.025 seconds

High speed matched filter synchronization circuit applied in frequency hopping FSK Transceiver (주파수도약 대역 확산 FSK 수신기의 고속 정합여파기 동기회로)

  • Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1543-1548
    • /
    • 2009
  • In this paper, a high speed code synchronization circuit is proposed. for fast code synchronization, matched filler method is used for initial code acquisition with two channel correlators. Particular frequency patterns of the limited number having the information about PN code start time are composed and transmitted repeatedly to increase the probability of accurate initial synchronization. And digital frequency synthesizer is proposed. And it's performance is analyzed theoretically. The analysis show that fast frequency hopping is possible in frequency hopping system that use digital frequency synthesizer.

Performance Improvement of an Anti-Islanding Algorithm using the Variation of Reactive Power with an Improved DFT Method (개선된 DFT을 이용한 무효전력변동 단독운전 검출기법의 성능 개선)

  • Kang, Duk-Hong;Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.179-187
    • /
    • 2010
  • This paper proposes a new anti-islanding method for single-phase grid-connected photovoltaic (PV) systems using Goertzel algorithm. The proposed scheme is based on inducing increases or decreases of frequencies of load voltage and current that is in the form of existences or periodical variations of the reactive power components. The frequency detection is needed to apply this power variation method to the grid-connected power converter. The proposed method is able to get a fast detection for anti-islanding without the effect of harmonics and noises. The simulation and experiment results validate the effectiveness of the proposed method.

A Design of CMOS Transceiver for noncoherent UWB Communication system (비동기방식 UWB통신용 CMOS 아날로그 송수신단의 설계)

  • Park, Jung-Wan;Moon, Yong;Choi, Sung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.71-78
    • /
    • 2005
  • In this paper, we propose a transceiver for noncoherent OOK(On-Off Keying) Ultra Wide Band system based on magnitude detection. The proposed transceiver are designed using 0.18 micron CMOS technology and verified by simulation using SPICE and measurement. The proposed transceiver consist of parallelizer, Analog-to-Digital converter, clock generator, PLL and impulse generator. The time resolution of 1ns is obtained with 125MHz system clocks and 8x parallelization is carried out. The synchronized eight outputs with 2-bit resolution are delivered to the baseband. Impulse generator produces 1ns width pulse using digital CMOS gates. The simulation results and measurement show the feasibility of the proposed transceiver for UWB communication system.

A Design Study of Phase Detectors for the 2.5 Gb/s Clock and Data Recovery Circuit (2-5 Gb/s 클럭-데이터 복원기를 위한 위상 비교기 설계 연구)

  • 이영미;우동식;유상대;김강욱
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.394-397
    • /
    • 2002
  • A design study of phase detectors for the 2.5 Gb/s CDR circuit using a standard 0.18-${\mu}{\textrm}{m}$ CMOS process has been performed. The targeted CDR is based on the phase-locked loop and thus it consists of a phase detector, a charge pump, a LPF, and a VCO. For high frequency operation of 2.5 Gb/s, phase detector and charge pump, which accurately compare phase errors to reduce clock jitter, are critical for designing a reliable CDR circuit. As a phase detector, the Hogge phase detector is selected but two transistors are added to improve the performance of the D-F/F. The charge pump was also designed to be placed indirectly input and output.

  • PDF

Robustness Examination of Tracking Performance in the Presence of Ionospheric Scintillation Using Software GPS/SBAS Receiver

  • Kondo, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.235-240
    • /
    • 2006
  • Ionospheric scintillation induces a rapid change in the amplitude and phase of radio wave signals. This is due to irregularities of electron density in the F-region of the ionosphere. It reduces the accuracy of both pseudorange and carrier phase measurements in GPS/satellite based Augmentation system (SBAS) receivers, and can cause loss of lock on the satellite signal. Scintillation is not as strong at mid-latitude regions such that positioning is not affected as much. Severe effects of scintillation occur mainly in a band approximately 20 degrees on either side of the magnetic equator and sometimes in the polar and auroral regions. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. This paper focuses on estimation of the effects of ionospheric scintillation on GPS and SBAS signals using a software receiver. Software receivers have the advantage of flexibility over conventional receivers in examining performance. PC based receivers are especially effective in studying errors such as multipath and ionospheric scintillation. This is because it is possible to analyze IF signal data stored in host PC by the various processing algorithms. A L1 C/A software GPS receiver was developed consisting of a RF front-end module and a signal processing program on the PC. The RF front-end module consists of a down converter and a general purpose device for acquiring data. The signal processing program written in MATLAB implements signal acquisition, tracking, and pseudorange measurements. The receiver achieves standalone positioning with accuracy between 5 and 10 meters in 2drms. Typical phase locked loop (PLL) designs of GPS/SBAS receivers enable them to handle moderate amounts of scintillation. So the effects of ionospheric scintillation was estimated on the performance of GPS L1 C/A and SBAS receivers in terms of degradation of PLL accuracy considering the effect of various noise sources such as thermal noise jitter, ionospheric phase jitter and dynamic stress error.

  • PDF

Design of a 2.5GHz $0.25{\mu}m$ CMOS Dual-Modulus Prescaler (2.5GHz $0.25{\mu}m$ CMOS Dual-Modulus 프리스케일러 설계)

  • Oh, K.C.;Kang, K.S.;Park, J.T.;Yu, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.476-478
    • /
    • 2006
  • A prescaler is an essential building block for PLL-based frequency synthesizers and must satisfy high-speed and low-power characteristics. The design of D-flip flips used in the prescaler implementation is thus critical. In this paper a 64/65, 128/129 dual-modulus prescaler is designed using a $0.25{\mu}m$ CMOS process. In the design a new dynamic D-flip flop is employed, where glitches are minimized using discharge suppression scheme, speed is improved by making balanced propagation delay, and low power consumption is achieved by removing unnecessary discharge. The designed prescaler operates up to 2.5GHz and consumes 3.1mA at 2.5GHz operation.

  • PDF

Sensorless Drive for Mono Inverter Dual Parallel Surface Mounted Permanent Magnet Synchronous Motor Drive System (단일 인버터를 이용한 표면 부착형 영구자석 동기 전동기 병렬 구동 시스템의 센서리스 구동 방법)

  • Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This paper presents the sensorless drive method for mono inverter dual parallel (MIDP) surface mounted permanent magnet synchronous motor (SPMSM) drive system. MIDP motor drive system is a technique that can reduce the cost of the multi motor driving system. To maximize this merit of the MIDP motor drive system, the sensorless technique is essential to eliminate the position sensors. This paper adopts an appropriate sensorless method for MIDP SPMSM drive system, which uses the reduced order observer and phase locked loop (PLL) to reduce the calculation burden. The I-F control method is implemented for start-up and low speed operation. The validity and performance of the proposed algorithm are shown via experiments with 600-W SPMSMs.

A Study on the Manufacture of the Continuum Receiver System for Observing Cosmic Radio Waves (우주전파 관측용 연속파 수신시스템 제작에 관한 연구)

  • 서정빈;이창훈;임인성;한석태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.67-75
    • /
    • 1994
  • In this paper, we manufactured the continuum receiver system for observing the continuum waves emitted from the continuum sources with using the 14m radio-telescope. The receiving system measures the total power of the continuum sources and consists of DC-amplifier, beam-chopper system. Phase-Locked Loop(PLL) circuit, blanking circuit and its period selection circuit, V/F converter, and counter part which are capable of interfacing with the computer which is used for a data acquisition and making the radio-telescope track the source. We compared the obsevation results which use the existing DVM method with the observation results which use the continuum receiver to measure the total power of the sources. Moreover, by method of beam switching observation which uses newly installed beam chopper system. We can significantly improve the observational efficiency more than the existing position switching observation method.

  • PDF

A Low Dynamic Power 90-nm CMOS Motion Estimation Processor Implementing Dynamic Voltage and Frequency Scaling Scheme and Fast Motion Estimation Algorithm Called Adaptively Assigned Breaking-off Condition Search

  • Kobayashi, Nobuaki;Enomoto, Tadayoshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.512-515
    • /
    • 2009
  • A 90-nm CMOS motion estimation (ME) processor was developed by employing dynamic voltage and frequency scaling (DVFS) to greatly reduce the dynamic power. To make full use of the advantages of DVFS, a fast ME algorithm and a small on-chip DC/DC converter were also developed. The fast ME algorithm can adaptively predict the optimum supply voltage ($V_D$) and the optimum clock frequency ($f_c$) before each block matching process starts. Power dissipation of the ME processor, which contained an absolute difference accumulator as well as the on-chip DC/DC converter and DVFS controller, was reduced to $31.5{\mu}W$, which was only 2.8% that of a conventional ME processor.

  • PDF

SW-VVVF System for High Efficiency Drive of Induction Motor (삼상 유도전동기의 고효율 운전을 위한 SW-VVVF 시스템에 관한 연구)

  • 유철로;이공희;이성룡
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.2
    • /
    • pp.93-99
    • /
    • 1989
  • This paper describes Sinusoidal Wave-Variable Voltage Variable Fequency (SW-VVVF) system for the high efficiency drive of a 3-phase induction motor. SW-VVVF system consists of a 3-phase 24-pulse converter and a SPWM inverter. The converter with additional 2 tap diode circuits in interphase reactor reduces harmonics in input current. The SPWM inverter consists of an improved PLL system and a V/F controller, which reduces harmonics in output current and performs a high efficiency algorithm by maintaining a constant slip frequency and compensating for the velocity variation of the induction motor with the change of load. Therefore, this system reduces harmonics in input and output currents, and also can drive an induction motor with high efficiency in an economical way. We have proved its utility through experiment.

  • PDF