A Low Dynamic Power 90-nm CMOS Motion Estimation Processor Implementing Dynamic Voltage and Frequency Scaling Scheme and Fast Motion Estimation Algorithm Called Adaptively Assigned Breaking-off Condition Search

Nobuaki Kobayashi and Tadayoshi Enomoto
Chuo University, Graduate School of Science and Engineering
Information and System Engineering Course
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Abstract

A $90-\mathrm{nm}$ CMOS motion estimation (ME) processor was developed by employing dynamic voltage and frequency scaling (DVFS) to greatly reduce the dynamic power. To make full use of the advantages of DVFS, a fast ME algorithm and a small on-chip DC/DC converter were also developed. The fast ME algorithm can adaptively predict the optimum supply voltage (V_{D}) and the optimum clock frequency $\left(f_{\mathrm{c}}\right)$ before each block matching process starts. Power dissipation of the ME processor, which contained an absolute difference accumulator as well as the on-chip DC/DC converter and DVFS controller, was reduced to $31.5 \mu \mathrm{~W}$, which was only 2.8% that of a conventional ME processor.

Keywords: H.264, motion estimation, DVFS, power dissipation, DC/DC converter, PLL clock driver

1. Introduction

Power reduction techniques are necessary for batterydriven portable systems such as video encoding LSIs. Two techniques are known to reduce dynamic power (P). One is a power gating technique [1] that reduces the P of a processor by disconnecting the power supply through the use of MOSFET switches whenever the signal processing is completed. The amount of P reduction is proportional to the amount of signal processing reduction (e.g., P is ideally reduced to $1 / 2$ when the amount of signal processing is reduced to $1 / 2$).

The other technique involves using a dynamic voltage and frequency scaling (DVFS) technique [2] for which both the minimum supply voltage $\left(V_{\mathrm{D}}\right)$ and the minimum clock frequency $\left(f_{c}\right)$ are supplied to the processor. These minimum values are proportional to the amount of signal processing, so the P reduction is proportional to the cube of the amount of signal processing (e.g., P is reduced to $1 / 8$ when the signal processing amount is reduced to $1 / 2$). Thus, P reduction using the DVFS scheme is much larger than that of the power gating technique.

To use the DVFS technique effectively, a small onchip DC/DC level shifter and a fast motion estimation (ME) algorithm are needed. The fast ME algorithm must be able to adaptively estimate both the minimum V_{D} and the minimum f_{c} before every block-matching (BM) process begins. However, conventional fast ME algorithms [3,4] can estimate neither the minimum V_{D} nor the minimum f_{c}, since they use visual distortion factors (e.g., values of absolute-difference accumulations) as threshold values to stop BM processes. In fact, visual distortion factors are independent of both V_{D} and f_{c}. Thus, conventional fast ME algorithms cannot be used in DVFS systems. To solve these problems we have developed a new ME algorithm with a BMstopping condition that can predict both the required

Fig. 2.1 Motion estimation process for $\mathbf{A}^{\mathbf{2}} \mathbf{B C S}$.
minimum V_{D} and f_{c} for each macro-block (M-Blk) for coding. The new ME algorithm, called the "adaptively assigned breaking-off condition search" ($\mathrm{A}^{2} \mathrm{BCS}$) can maintain the same visual quality as that of a full search (FS) algorithm.
We fabricated a $90-\mathrm{nm}$ CMOS ME processor that employs the DVFS technique and the $\mathrm{A}^{2} \mathrm{BCS}$ algorithm. The P of the processor was $31.5 \mu \mathrm{~W}$, a significant reduction in P that was equivalent to only 3% of that of a conventional processor.

2. ME ALGORITHM FOR DVFS

2.1 ALGORITHM

The ME process for a given M-Blk in a current picture is illustrated as a solid line in Fig. 2.1, where the smallest present value of an absolute-difference accumulation $\{d(n)\}$ is plotted as a function of the number of BM processes (n). The ME process starts from the centre of the search window in a reference picture frame and moves toward the outer area. During this process, $d(n)$ reaches the smallest value, which is denoted by $d\left(n_{\mathrm{m}}\right)$, at n of n_{m}, and then $d\left(n_{\mathrm{m}}\right)$ is kept constant as n increases. The most efficient (i.e., the fastest) ME process is thus performed when the BM process is stopped at n of n_{m}.
If we could determine the value of n_{m} before the ME process begins for a given M-Blk for coding, we could calculate both the required V_{D} and f_{c} that are proportional to n_{m}. Thus, DVFS can be adopted. However, in fact, there is no way to estimate the value of n_{m}.
Both n and $d(n)$ are always monitored, so we can start to calculate n whenever the value of $d(n)$ decreases. This n is denoted as n_{r} in Fig. 2.1. While $d(n)$ changes frequently (i.e., $n_{\mathrm{r}} \mathrm{s}$ are small), we should not stop the BM process. However, $d(n)$ keeps the same value for a large number of BM processes; that is, n_{r} becomes larger and is equal to an assigned number of BM processes $\left(n_{q}\right)$, so that the possibility that $d(n)$ will change is very small. Then we can finish the BM process.

To determine the value of n_{q}, the latest information

Fig. 2.2 Simulated characteristics of $\mathrm{A}^{2} \mathrm{BCS}$ for each macro block in the $200^{\text {th }}$ frame. (a) Max. $\boldsymbol{n}_{\mathrm{m}}$ s. (b) Quantized $\boldsymbol{n}_{\mathrm{q}}$ (c) Total number of BM processes ($n_{\mathrm{t}} \mathrm{s}$). (d) $\boldsymbol{d}_{\mathrm{m}} \mathrm{s}$ (gray) of $\mathrm{A}^{2} \mathrm{BCS}$, on which $\boldsymbol{d}_{\mathrm{m}} \mathrm{S}$ of FS (black) are overlapped.
should be used. It is known that the characteristics of the M-Blk in the current frame resemble those of the M-Blk in the reference frame (i.e., the previous frame for P pictures) for which both M-Blks are located in the same place. Thus, n_{m} of the M-Blk in the reference frame was chosen as the value of n_{q} (this n_{m} is denoted as n_{m}). This means that the ME process can be adaptively stopped; consequently, d_{m} can be determined automatically. Then, the number of BM processes $\left(n_{\mathrm{t}}\right)$ for each M-Blk is thus given by the sum of n_{m} and $n_{\mathrm{q}}\left(=n_{\mathrm{m}}\right)$.

The encoding performance of the developed algorithm was evaluated by using several test video sequences. It was much faster than the FS algorithm, although the visual quality was slightly degraded; that is, $d\left(n_{\mathrm{m}}\right)$ became slightly larger while the average peak signal-tonoise ratio (Ave peak $R_{\text {sn }}$) was slightly smaller than that of FS. This is one reason why the adaptively assigned n_{q} (i.e., n_{m}) might be smaller than the optimum values, which results in the BM process stopping earlier than expected and a consequently larger d_{m}.

To improve visual quality, values of adaptively assigned n_{q} should increase by using the most recent information obtained by both the M-Blk in the reference frame and M-Blks located at the top, left, and upper left of the given M-Blk in the current frame. We chose the largest n_{m} (Max. n_{m}) among the n_{m} values of these four M-Blks. Then n_{q} is quantized by using the equation given by

$$
2^{k+1}>\text { Max. } n_{\mathrm{m}} \geq 2^{k}
$$

as follows. When k is larger than K, n_{q} is set to 2^{k}; when k is equal to or smaller than K, n_{q} is fixed at 2^{K}. As previously mentioned, this ME algorithm is called the adaptively assigned breaking-off condition search ($\mathrm{A}^{2} \mathrm{BCS}$) algorithm. The quantized n_{q} that is larger than $n_{\mathrm{q}}\left(=n_{\mathrm{m}}\right)$ is expected to improve visual quality of the encoded pictures.

Fig. 2.3 Motion-compensated P-picture ("Foreman", $\boldsymbol{R}_{\mathrm{f}}=$ $15 \mathrm{fps}, R_{\mathrm{d}}=384 \mathrm{kbps}, p=10$ pixels, $200^{\text {th }}$ frame). (a) FS. (b) $\mathrm{A}^{2} \mathrm{BCS}$.

2.2 Characteristics

An H. 264 encoding program, in which $\mathrm{A}^{2} \mathrm{BCS}$ was programmed, was used for simulation. A quarter-pel search and variable M-Blk size search were not used after $\mathrm{A}^{2} \mathrm{BCS}$ was completed. The size of the M-Blk was only 16 pixels $\times 16$ lines. The size of the search window was given by $\{(2 p+16)$ pixels $\times(2 p+16)$ lines $\}$, where p was the number of pixels and was set at 10 . The maximum number of n was 441 (i.e., $4 p^{2}$). Frame rate $\left(R_{\mathrm{f}}\right)$ and data rate $\left(R_{\mathrm{d}}\right)$ were 15 frames $/ \mathrm{sec}(\mathrm{fps})$ and 384 $\mathrm{kbit} / \mathrm{sec}$ (kbps). Encoding performance of the $\mathrm{A}^{2} \mathrm{BCS}$ algorithm was evaluated by using several test video sequences.

Simulation characteristics of $\mathrm{A}^{2} \mathrm{BCS}$ with $K=4$ for a test video sequence called "Foreman" are shown in Fig. 2.2 for the $200^{\text {th }}$ frame. "Foreman" consists of a single I picture and 299 P-pictures with a common intermediate format (CIF) (352 pixels $\times 288$ lines). Figure 2.2(a) shows Max. $n_{\mathrm{m}} \mathrm{s}$ of 396 M-Blks in the 200th frame, and (b) plots quantized $n_{\mathrm{q}} \mathrm{s}$, that is, 2^{k} for $k>4$ and 16 for $k \leq 4$. Figure 2.2(c) shows the numbers of BM processes ($n_{t} \mathrm{~s}$) for each M-Blk. $\mathrm{A}^{2} \mathrm{BCS}$ is considerably faster (i.e., $n_{\mathrm{t}} \mathrm{S}$ is considerably smaller) than that ($n_{\mathrm{t}} \mathrm{s}=441$) of FS. The search speed of $A^{2} B C S$ is 9.6 times faster than FS. Figure $2.2(\mathrm{~d})$ shows d_{m} (gray) of $\mathrm{A}^{2} \mathrm{BCS}$, overlapped with the d_{m} of FS (black). The d_{m} of $\mathrm{A}^{2} \mathrm{BCS}$ agrees well with that of FS, indicating that the visual quality is almost the same.

Figures 2.3(a) and (b) show one of the motioncompensated P-pictures in "Foreman" obtained by FS and $\mathrm{A}^{2} \mathrm{BCS}$ with $K=4$, respectively. It is difficult to find a significant difference between these two pictures. Furthermore, the Ave peak R_{sn} of $\mathrm{A}^{2} \mathrm{BCS}$ is 37.428 dB , exactly the same as that of FS. This means that visual quality was considerably improved by using quantized n_{q} S.

The performance of $\mathrm{A}^{2} \mathrm{BCS}$ with $K=4$ in CIF testvideo sequences called "Akiyo" and "Coastguard" was also evaluated. The search speeds of $\mathrm{A}^{2} \mathrm{BCS}$ for "Akiyo" and "Coastguard" were respectively 23.2 and 20.0 times faster than FS. The Ave peak $R_{\text {sn }}$ of $\mathrm{A}^{2} \mathrm{BCS}$ for "Akiyo" and "Coastguard" was slightly smaller (i.e., 0.010 and 0.039 dB smaller) than that of FS (i.e., the distortion performance of $\mathrm{A}^{2} \mathrm{BCS}$ is almost the same as that of FS).

3 CMOS Motion Estimation (ME) Processor

To examine the effect of the $\mathrm{A}^{2} \mathrm{BCS}$ algorithm and the DVFS technique on power reduction, an ME processor

Fig. 3.1 ME processor employing DVFS.

Fig. 3.3 Circuit diagram of 8-bit two-stage pipelined absolute difference accumulator (ADA) with DC/DC converter.
was fabricated using $90-\mathrm{nm}$, triple-well, six-layer Cu interconnect, CMOS technology. The ME processor consisted of a two-stage pipelined absolute difference accumulator (ADA), a DVFS controller, a DC/DC converter, and a PLL clock driver, as shown in Fig. 3.1. Figure 3.2 shows a photograph and layout of a CMOS LSI in which the ME processor ($330 \mu \mathrm{~m} \times 970 \mu \mathrm{~m}$) was integrated.

3.1 Absolute Difference Accumulator

Figure 3.3 shows circuit diagrams of the 8 -bit ADA with the DC/DC converter. The ADA consists of an 8-bit absolute difference circuit (ADC) and a 16-bit

Fig. 3.4 Measured and simulated power dissipations (Ps) of the $90-\mathrm{nm}$ CMOS ADA as a function of f_{c}.
accumulator (ACC). The ADA was designed to calculate $d(n)$ s for all M-Blks in an entire search window to obtain the best-matching MB having the smallest $d(n)$. The DC/DC converter consists of five pMOSFET switches $\left\{\mathrm{SW}_{m}(m=1\right.$ to 5$\left.)\right\}$ connected in parallel. One of five switches connects a power supply (V_{DD}) and the ADA on request. When a control signal from the DVFS controller becomes " 0, , SW_{m} is turned on. Thus, a virtual supply voltage (= optimum V_{D}) can be given by $V_{\mathrm{DD}}-v_{m}$, where v_{m} is a voltage drop of SW_{m}.
Figure 3.4 plots the experimentally measured power dissipation (P) of the ADA with the DC/DC converter (squares) along with the SPICE-simulated P (solid line) as a function of the clock frequency $\left(f_{\mathrm{c}}\right)$ at V_{DD} of 1.0 V . The measured P s agree well with the simulated $P \mathrm{~s}$. It is clear that P of the ADA with the $\mathrm{DC} / \mathrm{DC}$ converter is much smaller than P of the conventional ADA (circles and dotted line).

3.2 DVFS CONTROLLER

The DVFS controller consists of a maximum data detector, a minimum data detector, a quantized n_{q} generator, a comparator, several counters, SRAMs, etc. The DVFS controller was designed not only to detect $d\left(n_{\mathrm{m}}\right)$ and n_{m}, but also to generate the quantized n_{q}.

Figure 3.5 depicts the clock timing of the BM process for the nth M-Blk for coding. After the BM process for ($n-1$)th M-Blk is finished, the DVFS controller starts to calculate the Max. n_{m} and to estimate the quantized n_{q}. Then, for the nth M-Blk, the DVFS controller estimates the optimum f_{c}, the optimum V_{D}, and n_{p}. The n_{p} is the maximum number of BM processes that can be carried out for the nth M-Blk at the given optimum f_{c}. Only several clock periods are needed to obtain these values. The quantized $n_{\mathrm{q}} \mathrm{S}\left(=2^{k}\right)$ and corresponding optimum $f_{\mathrm{c}} \mathrm{s}$, optimum $V_{\mathrm{D}} \mathrm{S}$, and $n_{\mathrm{p}} \mathrm{s}$ are summarized in Table 3.1. The $P \mathrm{~s}$ of the ADA with the $\mathrm{DC} / \mathrm{DC}$ converter at the given quantized $n_{\mathrm{q}} \mathrm{s}$ are also listed in Table 3.1. The optimum f_{c} and the optimum V_{D} are respectively generated by the PLL clock driver and the DC/DC converter and then supplied to the ADA. The BM process to generate $d(n)$ is stopped, whenever n_{r} reaches the quantized n_{q} (Figs. 2.1 and 3.5).

Fig. 3.5 Clock timing of the BM process for the \boldsymbol{n} th M-Blk for coding.

Table 3.1 Quantized $\boldsymbol{n}_{\mathbf{q}}$, optimized $\boldsymbol{V}_{\mathrm{D}}$, optimized $f_{\mathrm{c}}, \boldsymbol{n}_{\mathrm{p}}$ and \boldsymbol{P}.

Quantized $n_{\mathrm{q}}=2^{k}$	Optimum $f_{\mathrm{c}}[\mathrm{MHz}]$	Optimum $V_{\mathrm{D}}[\mathrm{V}]$	n_{p}	P_{AT} $[\mu \mathrm{W}]$
$2^{8}=256$	680	1.00	450	1,111
$2^{7}=128$	340	0.60	225	344.1
$2^{6}=64$	170	0.50	112	146.1
$2^{5}=32$	85	0.45	56	65.15
$2^{4}=16$	43	0.40	28	26.12

4 Power Dissipation of ME Processor

Figure 4.1(a) and (b) show both the optimum $f_{\mathrm{c}} \mathrm{s}$ and the optimum $V_{\mathrm{D}} \mathrm{S}$, respectively for each M-Blk in the $200^{\text {th }}$ frame of "Foreman" ($\mathrm{A}^{2} \mathrm{BCS}$ with $K=4$). They are adaptively assigned for each M-Blk by the quantized $n_{q} \mathrm{~S}$ that are shown in Fig. 2.2(b).

Figure 4.1(c) shows $n_{\mathrm{p}} \mathrm{s}$ (black), on which $n_{\mathrm{m}} \mathrm{s}$ (gray) are overlapped. The $n_{\mathrm{p}} \mathrm{s}$ are also adaptively assigned by the corresponding quantized $n_{\mathrm{q}} \mathrm{s}$. To maintain excellent visual quality, such as that of FS, the best-matching MBlk must be found before n_{m} reaches n_{p} (i.e., $n_{\mathrm{m}}<n_{\mathrm{p}}$). All M-Blks shown in Figure 4.1(c) satisfy this condition $\left(n_{\mathrm{m}}<n_{\mathrm{p}}\right)$. This means that there is no degradation of visual quality due to the introduction of DVFS.

Figure $4.1(\mathrm{~d})$ shows P, which is consumed by the ADA with the DC/DC converter, at each M-Blk. By employing the DVFS technique, the P values of most MBlks are reduced to less than $65 \mu \mathrm{~W}$, that is, about 7% of the maximum P. This means that the DVFS technique with the $\mathrm{A}^{2} \mathrm{BCS}$ algorithm is very effective to reduce P.

The average P of the ADA for 299 P-pictures of "Foreman" was $86.2 \mu \mathrm{~W}$, that is, 7.37% of $P(1,170 \mu \mathrm{~W})$ of the conventional ADA. Similarly, employing A^{2} BCS and the DVFS technique significantly reduces the P of the ADA for other test video sequences. They were 29.5 $\mu \mathrm{W}$ for "Akiyo" and $29.6 \mu \mathrm{~W}$ for "Coastguard"; these values are 2.52% and 2.53% of P for the conventional ADA, respectively.

The values of P of the ME processor varied from 31.5 to $88.2 \mu \mathrm{~W}$ depending on the test video pictures. These were the sums of P of the ADA and P of the DVFS controller. The DVFS controller operated at the clock frequency of 680 MHz . However, it was stopped most of the time (Fig. 3.5) by using a gated clock technique Therefore, the P of the DVFS controller was dominated by leakage currents, and was $1.95 \mu \mathrm{~W}$.

Fig. 4.1 Simulated characteristics of each M-Blk in the $200^{\text {th }}$ frame. (a) Optimized $f_{\mathrm{c}} \mathrm{s}$. (b) Optimized $V_{\mathrm{D}} \mathrm{s}$. (c) $n_{\mathrm{m}} \mathrm{s}$ on $n_{\mathrm{p}} \mathrm{s}$. (d) $P \mathrm{~s}$ of ME processor.

5 Summary

A motion estimation (ME) processor that employs dynamic voltage and frequency scaling (DVFS) was developed using $90-\mathrm{nm}$ CMOS technology. To make full use of the advantages of DVFS, we developed a fast motion estimation algorithm called the adaptively assigned breaking-off condition search ($\mathrm{A}^{2} \mathrm{BCS}$). The $\mathrm{A}^{2} \mathrm{BCS}$ algorithm can predict the optimum clock frequency and the optimum supply voltage. The ME processor consists of an absolute difference accumulator with a small DC/DC converter, a minimum value detector, a DVFS controller, and a PLL clock generator. Power dissipation of the ME processor was significantly reduced and varied from 31.5 to $88.2 \mu \mathrm{~W}$, only 3 to 8% of the power dissipation of a conventional ME processor, depending on the test video pictures. Thus, DVFS is one of the most useful power reduction techniques for future video picture coding applications.

References

[1] S. Kim, S. V. Kosonocky, D.R. Kneble, and K. Stawlasz, "Experimental measuremnt of a novel power gating structure with intermediate power saving mode," Proc. ISLPED, pp. 20-25, Sept. 2004.
[2] V. Gutnik and A Chandrakasan, "An efficient controller for variable supply-voltage low power processing," Symp. on VLSI Circuits, pp. 158-159, June 1996.
[3] C. H. Cheung and L. M. Po, "Novel cross-diamond search algorithms for fast block motion estimation," IEEE Tran. on Multimedia, vol.12, no. 12, pp. 11681177, Dec. 2005.
[4] T-H Tsai and Y-N Pan, "Novel cross-diamond search algorithms for fast block motion estimation," IEEE Tran. on Circuits. Syst. Video Technol., vol.16, no. 12, pp. 1542-1549, Dec. 2006.

