• Title/Summary/Keyword: PLS(Partial Least Square) Regression Analysis

Search Result 33, Processing Time 0.032 seconds

Determination of Nitrogen in Fresh and Dry Leaf of Apple by Near Infrared Technology (근적외 분석법을 응용한 사과의 생잎과 건조잎의 질소분석)

  • Zhang, Guang-Cai;Seo, Sang-Hyun;Kang, Yeon-Bok;Han, Xiao-Ri;Park, Woo-Churl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.259-265
    • /
    • 2004
  • A quicker method was developed for foliar analysis in diagnosis of nitrogen in apple trees based on multivariate calibration procedure using partial least squares regression (PLSR) and principal component regression (PCR) to establish the relationship between reflectance spectra in the near infrared region and nitrogen content of fresh- and dry-leaf. Several spectral pre-processing methods such as smoothing, mean normalization, multiplicative scatter correction (MSC) and derivatives were used to improve the robustness and performance of the calibration models. Norris first derivative with a seven point segment and a gap of six points on MSC gave the best result of partial least squares-1 PLS-1) model for dry-leaf samples with root mean square error of prediction (RMSEP) equal to $0.699g\;kg^{-1}$, and that the Savitzky-Golay first derivate with a seven point convolution and a quadratic polynomial on MSC gave the best results of PLS-1 model for fresh-samples with RMSEP of $1.202g\;kg^{-1}$. The best PCR model was obtained with Savitzky-Golay first derivative using a seven point convolution and a quadratic polynomial on mean normalization for dry leaf samples with RMSEP of $0.553g\;kg^{-1}$, and obtained with the Savitzky-Golay first derivate using a seven point convolution and a quadratic polynomial for fresh samples with RMSEP of $1.047g\;kg^{-1}$. The results indicate that nitrogen can be determined by the near infrared reflectance (NIR) technology for fresh- and dry-leaf of apple.

Development of Prediction Model for Total Dietary Fiber Content in Brown Rice by Fourier Transform-Near Infrared Spectroscopy (FT-NIR spectroscopy를 이용한 현미의 총 식이섬유함량분석 예측모델 개발)

  • Lee, Jin-Cheol;Yoon, Yeon-Hee;Kim, Sun-Min;Pyo, Byeong-Sik;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.165-168
    • /
    • 2006
  • Fourier transform-near infrared spectroscopy (FT-NIRS) was evaluated for determination of total dietary fiber (TDF) content of brown rice. Enzymatic-gravimetric method was suitable to obtain reference values for calibration of NIR at 1,000-2,500 nm range. Standard error of laboratory procedure ranged 0.17 to 0.72%. Partial least square (PLS) regression was used to develop the calibration equations. Regression was performed automatically using NIRCal chemometric software. Accuracy of prediction model for TDF content was certified for regression coefficient (r), standard error of estimation (SEE) and standard error of prediction (SEP), showing 0.9780, 0.0636, and 0.0642, respectively. This prediction model can be used for determination of TDF in brown rice and would be useful for real-time analysis in food industry.

Application of Fourier Transform Near-Infrared Spectroscopy for Prediction Model Development of Total Dietary Fiber Content in Milled Rice (백미의 총 식이섬유함량 예측 모델 개발을 위한 퓨리에변환 근적외선분광계의 적용)

  • Lee Jin-Cheol;Yoon Yeon-Hee;Eun Jong-Bang
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.608-612
    • /
    • 2005
  • Fourier transform-near infrared (FT-NIR) spectroscopy is a simple, rapid, non-destructive technique which can be used to make quantitative analysis of chemical composition in grain. An interest in total dietary fiber (TDF) of grain such as rice has been increased due to its beneficial effects for health. Since measuring methods for TDF content were highly depending on experimental technique and time consumptions, the application of FT-NIR spectroscopy to determine TDF content in milled rice. Results of enzymatic-gravimetric method were $1.17-1.92\%$ Partial least square (PLS) regression on raw NIR spectra to predict TDF content was developed Accuracy of prediction model for TDF content was certified for regression coefficient (r), standard error of estimation (SEE) and standard error of prediction (SEP). The r, SEE and SEP were 0.9705, 0.0464, and 0.0604, respectively. The results indicated that FT-NIR techniques could be very useful in the food industry and rice processing complex for determination of TDF in milled rice on real time analysis.

Simultaneous estimation of fatty acids contents from soybean seeds using fourier transform infrared spectroscopy and gas chromatography by multivariate analysis (적외선 분광스펙트럼 및 기체크로마토그라피 분석 데이터의 다변량 통계분석을 이용한 대두 종자 지방산 함량예측)

  • Ahn, Myung Suk;Ji, Eun Yee;Song, Seung Yeob;Ahn, Joon Woo;Jeong, Won Joong;Min, Sung Ran;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.60-70
    • /
    • 2015
  • The aim of this study was to investigate whether fourier transform infrared (FT-IR) spectroscopy can be applied to simultaneous determination of fatty acids contents in different soybean cultivars. Total 153 lines of soybean (Glycine max Merrill) were examined by FT-IR spectroscopy. Quantification of fatty acids from the soybean lines was confirmed by quantitative gas chromatography (GC) analysis. The quantitative spectral variation among different soybean lines was observed in the amide bond region ($1,700{\sim}1,500cm^{-1}$), phosphodiester groups ($1,500{\sim}1,300cm^{-1}$) and sugar region ($1,200{\sim}1,000cm^{-1}$) of FT-IR spectra. The quantitative prediction modeling of 5 individual fatty acids contents (palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid) from soybean lines were established using partial least square regression algorithm from FT-IR spectra. In cross validation, there were high correlations ($R^2{\geq}0.97$) between predicted content of 5 individual fatty acids by PLS regression modeling from FT-IR spectra and measured content by GC. In external validation, palmitic acid ($R^2=0.8002$), oleic acid ($R^2=0.8909$) and linoleic acid ($R^2=0.815$) were predicted with good accuracy, while prediction for stearic acid ($R^2=0.4598$), linolenic acid ($R^2=0.6868$) had relatively lower accuracy. These results clearly show that FT-IR spectra combined with multivariate analysis can be used to accurately predict fatty acids contents in soybean lines. Therefore, we suggest that the PLS prediction system for fatty acid contents using FT-IR analysis could be applied as a rapid and high throughput screening tool for the breeding for modified Fatty acid composition in soybean and contribute to accelerating the conventional breeding.

Issuing Municipal Bonds to Pay Compensation for Lands and Selecting Compensation Priority Areas for Urban Parks and Greenbelts unexecuted in the Long-Term - With a Focus on Seoul City - (장기미집행 도시공원 및 녹지 보상재원 마련을 위한 지방채 발행과 보상우선지역 선정 - 서울특별시를 대상으로 -)

  • Kim, Yu-Ri
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.3
    • /
    • pp.92-106
    • /
    • 2017
  • This paper examines the validity of issuing municipal bonds for land compensation of long-term unexecuted urban parks and greenbelts. Then it suggests that municipal bonds should be issued for compensation priority areas with high rising prices. By conducting correlation analysis and PLS(Partial Least Squares) regression for 32 long-term unexecuted urban parks and greenbelts, the factors were identified that affected 'rising prices of IAPLP(Individually Announced Public Land Price) after seven years'. According to the analysis results, Variable Importance in the Projection in PLS regression was higher in 'IAPLP of base year(1.919)' and 'Accumulated rising Rates of average IAPLP in the borough(1.176).' The implications of this study are as follows. In Seoul, the accumulated rising rates of average IAPLP over the past 12 years is higher than the accumulated interest rates for seven years of urban planning facility bonds, which means that IAPLP have risen more than the interest payments due to the issuance of municipal bonds. In addition, since the actual compensation is three times that of IAPLP, it is judged that the land price is actually much higher than the interest payments. This shows that issuing municipal bonds and preferentially compensating for areas like high rising land prices can increase the economic efficiency of the budget execution. Also, for economic efficiency of budget execution, it is necessary to propose an 'area with high IAPLP' or 'a part in the borough with high rising rate of average IAPLP,' which is expected to have a high rising land price as criteria for compensation priority areas. In the future, when issuing municipal bonds to compensate long-term unexecuted urban parks and greenbelts, variousresearch on financing for municipal bonds repayment should be conducted.

Mid-infrared (MIR) spectroscopy for the detection of cow's milk in buffalo milk

  • Anna Antonella, Spina;Carlotta, Ceniti;Cristian, Piras;Bruno, Tilocca;Domenico, Britti;Valeria Maria, Morittu
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.531-538
    • /
    • 2022
  • In Italy, buffalo mozzarella is a largely sold and consumed dairy product. The fraudulent adulteration of buffalo milk with cheaper and more available milk of other species is very frequent. In the present study, Fourier transform infrared spectroscopy (FTIR), in combination with multivariate analysis by partial least square (PLS) regression, was applied to quantitatively detect the adulteration of buffalo milk with cow milk by using a fully automatic equipment dedicated to the routine analysis of the milk composition. To enhance the heterogeneity, cow and buffalo bulk milk was collected for a period of over three years from different dairy farms. A total of 119 samples were used for the analysis to generate 17 different concentrations of buffalo-cow milk mixtures. This procedure was used to enhance variability and to properly randomize the trials. The obtained calibration model showed an R2 ≥ 0.99 (R2 cal. = 0.99861; root mean square error of cross-validation [RMSEC] = 2.04; R2 val. = 0.99803; root mean square error of prediction [RMSEP] = 2.84; root mean square error of cross-validation [RMSECV] = 2.44) suggesting that this method could be successfully applied in the routine analysis of buffalo milk composition, providing rapid screening for possible adulteration with cow's milk at no additional cost.

The Effect of Covid-19 Pandemic on the Adoption of Internet Banking in Indonesia: Islamic Bank and Conventional Bank

  • SUDARSONO, Heri;NUGROHOWATI, Rindang Nuri Isnaini;TUMEWANG, Yunice Karina
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.789-800
    • /
    • 2020
  • This study aims to examine the effect of perceived usefulness (PU), perceived ease of use (PEU), trust (TR), subjective norm (SN), and attitude (AT) on customer's Intention to Adopt Internet Banking (IAIB) at Islamic banks and conventional banks before and during the Covid-19 pandemic in Indonesia. The research model is based on the Theory of Planned Behavior (TPB) and the Technology Acceptance Model (TAM). This study involves 213 respondents for Islamic banks and 410 respondents for conventional banks from 25 provinces in Indonesia. Data was analyzed using partial least square (PLS) regression with the Structural Equation Model (SEM) method. The result of data analysis confirms several hypotheses taken from the literature. The results before the Covid-19 pandemic showed that AT and SN influence IAIB in Islamic banks. Whereas in conventional banks, AT, PU, SN, and TR influence IAIB. While during the Covid-19 pandemic, it shows that the AT, PU, IB, SN, and customer TR influence IAIB in Islamic banks and conventional banks. From the analysis, it was found that the PEU variable did not have a significant effect on the intention of customers of Islamic banks and conventional banks to use Internet banking.

Estimating Moisture Content of Cucumber Seedling Using Hyperspectral Imagery

  • Kang, Jeong-Gyun;Ryu, Chan-Seok;Kim, Seong-Heon;Kang, Ye-Seong;Sarkar, Tapash Kumar;Kang, Dong-Hyeon;Kim, Dong Eok;Ku, Yang-Gyu
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.273-280
    • /
    • 2016
  • Purpose: This experiment was conducted to detect water stress in terms of the moisture content of cucumber seedlings under water stress condition using a hyperspectral image acquisition system, linear regression analysis, and partial least square regression (PLSR) to achieve a non-destructive measurement procedure. Methods: Changes in the reflectance spectrum of cucumber seedlings under water stress were measured using hyperspectral imaging techniques. A model for estimating moisture content of cucumber seedlings was constructed through a linear regression analysis that used the moisture content of cucumber seedlings and a normalized difference vegetation index (NDVI). A model using PLSR that used the moisture content of cucumber seedlings and reflectance spectrum was also created. Results: In the early stages of water stress, cucumber seedlings recovered completely when sub-irrigation was applied. However, the seedlings suffering from initial wilting did not recover when more than 42 h passed without irrigation. The reflectance spectrum of seedlings under water stress decreased gradually, but increased when irrigation was provided, except for the seedlings that had permanently wilted. From the results of the linear regression analysis using the NDVI, the model excluding wilted seedlings with less than 20% (n=97) moisture content showed a precision ($R^2$ and $R^2_{\alpha}$) of 0.573 and 0.568, respectively, and accuracy (RE) of 4.138% and 4.138%, which was higher than that for models including all seedlings (n=100). For PLS regression analysis using the reflectance spectrum, both models were found to have strong precision ($R^2$) with a rating of 0.822, but accuracy (RMSE and RE) was higher in the model excluding wilted seedlings as 5.544% and 13.65% respectively. Conclusions: The estimation model of the moisture content of cucumber seedlings showed better results in the PLSR analysis using reflectance spectrum than the linear regression analysis using NDVI.

Discrimination of Pasture Spices for Italian Ryegrass, Perennial Ryegrass and Tall Fescue Using Near Infrared Spectroscopy (근적외선분광법을 이용한 이탈리안 라이그라스, 페레니얼 라이그라스,톨 페스큐 종자의 초종 판별)

  • Park, Hyung Soo;Choi, Ki Choon;Kim, Ji Hye;So, Min Jeong;Lee, Ki Won;Lee, Sang Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.2
    • /
    • pp.125-130
    • /
    • 2015
  • The objective of this study was to investigate the feasibility of using near infrared spectroscopy (NIRS) to discriminate between grass spices. A combination of NIRS and chemometrics was used to discriminate between Italian ryegrass, perennial ryegrass, and tall fescue seeds. A total of 240 samples were used to develop the best discriminant equation, whereby three spectra range (visible, NIR, and full range) were applied within a 680 nm to 2500 nm wavelength. The calibration equation for the discriminant analysis was developed using partial least square (PLS) regression and discrimination equation (DE) analysis. A PLS discriminant analysis model for the three spectra range that was developed with the mathematic pretreatment "1,8,8,1" successfully discriminated between Italian ryegrass, perennial ryegrass, and tall fescue. An external validation indicated that all of the samples were discriminated correctly. The discriminant accuracy was shown as 68%, 78%, and 73% for Italian ryegrass, perennial ryegrass, and tall fescue, respectively, with the NIR full-range spectra. The results demonstrate the usefulness of the NIRS-chemometrics combination as a rapid method for the discrimination of grass species by seed.

Variey Discrimination of Sorghum-Sudangrass Hybrids Seed Using near Infrared Spectroscopy (근적외선분광법을 이용한 수수×수단그라스 교잡종 종자의 품종 판별)

  • Lee, Ki-Won;Song, Yowook;Kim, Ji Hye;Rahman, Md Atikur;Oh, Mirae;Park, Hyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.259-264
    • /
    • 2020
  • The aim of this study was to investigate the feasibility of discrimination 12 different cultivar of sorghum × sudangrass hybrid (Sorghum genus) seed through near infrared spectroscopy (NIRS). The amount of samples for develop to the best discriminant equation was 360. Whole samples were applied different three spectra range (visible, NIR and full range) within 680-2500 nm wavelength and the spectrastar 2500 Near near infrared was used to measure spectra. The calibration equation for discriminant analysis was developed partial least square (PLS) regression and discrimination equation (DE) analysis. The PLS discriminant analysis model for three spectra range developed with mathematic pretreatment 1,8,8,1 successfully discriminated 12 different sorghum genus. External validation indicated that all samples were discriminated correctly. The whole discriminant accuracy shown 82 ~ 100 % in NIR full range spectra. The results demonstrated the usefulness of NIRS combined with chemometrics as a rapid method for discrimination of sorghum × sudangrass hybrid cultivar through seed.