DOI QR코드

DOI QR Code

Simultaneous estimation of fatty acids contents from soybean seeds using fourier transform infrared spectroscopy and gas chromatography by multivariate analysis

적외선 분광스펙트럼 및 기체크로마토그라피 분석 데이터의 다변량 통계분석을 이용한 대두 종자 지방산 함량예측

  • Ahn, Myung Suk (Plant systems Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ji, Eun Yee (Plant systems Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Song, Seung Yeob (Faculty of Biotechnology, Jeju National University) ;
  • Ahn, Joon Woo (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jeong, Won Joong (Plant systems Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Min, Sung Ran (Plant systems Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Suk Weon (Microbiological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 안명숙 (한국생명공학연구원 식물시스템연구센터) ;
  • 지은이 (한국생명공학연구원 식물시스템연구센터) ;
  • 송승엽 (제주대학교 일반대학원 생명공학과) ;
  • 안준우 (한국원자력연구원 첨단방사선연구소) ;
  • 정원중 (한국생명공학연구원 식물시스템연구센터) ;
  • 민성란 (한국생명공학연구원 식물시스템연구센터) ;
  • 김석원 (한국생명공학연구원 미생물자원센터)
  • Received : 2015.03.09
  • Accepted : 2015.03.21
  • Published : 2015.03.31

Abstract

The aim of this study was to investigate whether fourier transform infrared (FT-IR) spectroscopy can be applied to simultaneous determination of fatty acids contents in different soybean cultivars. Total 153 lines of soybean (Glycine max Merrill) were examined by FT-IR spectroscopy. Quantification of fatty acids from the soybean lines was confirmed by quantitative gas chromatography (GC) analysis. The quantitative spectral variation among different soybean lines was observed in the amide bond region ($1,700{\sim}1,500cm^{-1}$), phosphodiester groups ($1,500{\sim}1,300cm^{-1}$) and sugar region ($1,200{\sim}1,000cm^{-1}$) of FT-IR spectra. The quantitative prediction modeling of 5 individual fatty acids contents (palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid) from soybean lines were established using partial least square regression algorithm from FT-IR spectra. In cross validation, there were high correlations ($R^2{\geq}0.97$) between predicted content of 5 individual fatty acids by PLS regression modeling from FT-IR spectra and measured content by GC. In external validation, palmitic acid ($R^2=0.8002$), oleic acid ($R^2=0.8909$) and linoleic acid ($R^2=0.815$) were predicted with good accuracy, while prediction for stearic acid ($R^2=0.4598$), linolenic acid ($R^2=0.6868$) had relatively lower accuracy. These results clearly show that FT-IR spectra combined with multivariate analysis can be used to accurately predict fatty acids contents in soybean lines. Therefore, we suggest that the PLS prediction system for fatty acid contents using FT-IR analysis could be applied as a rapid and high throughput screening tool for the breeding for modified Fatty acid composition in soybean and contribute to accelerating the conventional breeding.

본 연구의 목적은 적외선 분광스펙트럼 데이터를 이용하여 대두 종자내의 지방산 함량을 동시에 예측할 수 있는지 여부를 조사하기 위한 것이다. 총 153종의 대두(Glycine max Merrill) 종자로부터 적외선 분광스펙트럼 및 지방산의 함량을 기체크로마토그라피 분석을 통하여 확인하였다. 적외선 분광스펙트럼 조사결과 대두는 단백질이나 아미노산의 amide bond region ($1,700{\sim}1,500cm^{-1}$), 핵산이나 인지질의 phosphodiester groups ($1,500{\sim}1,300cm^{-1}$) 그리고 탄수화물 등 다당류의 sugar region ($1,200{\sim}1,000cm^{-1}$)에서 계통별로 큰 차이가 이루어짐을 알 수 있었다. 총 29라인의 대두 계통별 시료로부터 지방산 함량을 조사한 결과 총 지방산의 함량은 건조 시료 0.1 g 당 $185.57{\mu}g$에서 $325.9{\mu}g$으로 계통간에 차이가 있었음을 알 수 있었으며 평균 함량은 $244.48{\mu}g$이었다. PLS regression 분석을 이용하여 총 5개 지방산(팔미틱산, 스테아릭산, 올레익산, 리노레익산 그리고 리노레닉산) 함량 예측 calibration models의 실측 검증 결과, 팔미틱산($R^2=0.8002$), 올레익산($R^2=0.8909$) 그리고 리노레익산($R^2=0.815$)은 회귀분석 상관계수가 0.8 이상으로 정확도 높음을 알 수 있었다. 그러나 스테아릭산($R^2=0.4598$)과 리노레닉산($R^2=0.6868$)의 경우 상관계수가 0.7 이하로 상대적으로 예측정확도가 낮음을 알 수 있었다. 본 연구에서 확립된 기술은 지방산의 조성 변환을 통하여 새로운 대두 품종 개발을 위한 계통선발 과정에서 매우 효율적인 수단으로 활용이 가능할 것으로 사료된다. 더 나아가 본 기술은 대두는 물론 대두 유래 농산물이나 식품의 품질 검증 수단으로 활용이 가능할 것으로 기대된다.

Keywords

References

  1. Alander JT, Bochko V, Martinkauppi B, Saranwong S, Mantere T (2013) A Review of Optical Nondestructive Visual and Near-Infrared Methods for Food Quality and Safety. Int J Spectrosc 2013 : 341-402
  2. Ascherio A, Willett WC (1997) Health effects of trans fatty acids. Am J Clin Nutr 66(Suppl 4) : 1006-1010
  3. Baranska M, Schutze W, Schulz H (2007) Determination of lycopene and beta-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal Chem 78 : 8456-8461
  4. Bellincontro A, Taticchi A, Servili M, Esposto S, Farinelli D, Mencarelli F (2012) Feasible application of a portable NIR-AOTF tool for on-field prediction of phenolic compounds during the ripening of olives for oil production. J Agric Food Chem 60 : 2665-2673 https://doi.org/10.1021/jf203925a
  5. Chen Q, Zhao J, Liu M, Cai J, Liu J (2008) Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. J Pharm Biomed Anal 46 : 568-573 https://doi.org/10.1016/j.jpba.2007.10.031
  6. Dumas P, Miller LM (2003) The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib Spectrosc 32 : 3-21. https://doi.org/10.1016/S0924-2031(03)00043-2
  7. Fehr WR, Welke GA, Hammond EG, Duvick DN, Cianzo SR (1991) Inheritance of elevated palmitic acid content in soybean seed oil. Crop Sci 31 : 1522-1524 https://doi.org/10.2135/cropsci1991.0011183X003100060027x
  8. Fernandez K, Agosin E (2007) Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry. J Agric Food Chem 55 : 7274-7300
  9. Fontaine J, Horr J, Schirmer B (2001) Near-infrared reflectance spectroscopy enables the fast and accurate prediction of the essential amino acid contents in soy, rapeseed meal, sunflower meal, peas, fishmeal, meat meal products, and poultry meal. J Agric Food Chem 49 : 57-66 https://doi.org/10.1021/jf000946s
  10. Kovalenko IV, Rippke GR, Hurburgh CR (2006a) Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. J Agric Food Chem 54 : 3485-3491 https://doi.org/10.1021/jf052570u
  11. Kovalenko IV, Rippke GR, Hurburgh CR (2006b) Measurement of soybean fatty acids by near-infrared spectroscopy; linear and nonlinear calibration methods. J Am Oil Chem Soc 83 : 421-427 https://doi.org/10.1007/s11746-006-1221-z
  12. Lanser AC, List GR, Holloway RK, Mounts TL (1991) FTIR estimation of free fatty acid content in crude oils extracted from damaged soybeans. J Am Oil Chem Soc 68 : 448-449 https://doi.org/10.1007/BF02663767
  13. Lee JD, Woolard M, Sleper DA, Smith JR, Pantalone VR, Nyinyi CN, Cardinal AC, Shannon JG (2009) Environmental effects on oleic acid in soybean seed oil of plant introductions with elevated oleic concentration. Crop Sci 49 : 1762-1768 https://doi.org/10.2135/cropsci2008.11.0663
  14. Liu Y, Ying Y, Yu H, Fu X (2006) Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits. J Agric Food Chem 54 : 2810-2815 https://doi.org/10.1021/jf052889e
  15. Marimuthu M, Gurumoorthi P (2013) Phytochemical screening and FT-IR studies on wild and common south indian legumes. Asian J Pharm Clin Res 6(supple 2) : 141-144
  16. Martens H, Naes T (1993) Multivariate Calibration; John Wiley and Sons: Chichester, U.K.
  17. Mateos-Aparicio I, Redondo Cuenca A, Villanueva-Suarez MJ, Zapata-Revilla MA (2008) Soybean, a promising health source. Nutr Hosp 23 : 305-312
  18. Miller SS, Pietrzak LN, Wetzel DL (2005) Preparation of soybean seed samples for FT-IR microspectroscopy. Biotechnic Histochemistry 80(3-4) : 117-121 https://doi.org/10.1080/10520290500166282
  19. Patil AG, Oak MD, Taware SP, Tamhankar SA, Rao VS (2010) Nondestructive estimation of fatty acid composition in soybean (Glycine max (L.) Merrill) seeds using near-infrared transmittance spectroscopy. Food Chem 12 : 1210-1217
  20. Pham AT, Lee JD, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10 : 195 https://doi.org/10.1186/1471-2229-10-195
  21. Quinones-Islas N, Meza-Marquez OG, Osorio-Revilla G, Gallardo-Velazquez T (2013) Detection of adulterants in avocado oil by Mid-FTIR spectroscopy and multivariate analysis. Food Res Int 51 : 148-154 https://doi.org/10.1016/j.foodres.2012.11.037
  22. Rahman SM, Takagi Y, Kubota K, Miyamoto K, Kawakita T (1994) High oleic mutant in soybean induced x-ray irradiation. Biosci Biotechnol Biochem 58 : 1070-1072 https://doi.org/10.1271/bbb.58.1070
  23. Roberts CA, Ren C, Beuselinck PR, Benedict HR, Bilyeu K (2006) Fatty acid profiling of soybean cotyledons by near-infrared spectroscopy. Appl Spectrosc 60 : 1328-1333 https://doi.org/10.1366/000370206778998932
  24. Sasser M (1990) Identifcation of Bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101, MIDI, Newark
  25. Sato T, Uezono I, Morishita T, Tetsuka T (1998) Nondestructive estimation of fatty acid composition in seeds of Brassica napus L. by near-infrared spectroscopy. J Am Oil Chem Soc 75 : 1877-1881 https://doi.org/10.1007/s11746-998-0344-9
  26. Sato T, Maw A, Katsuta M (2003) NIR reflectance spectroscopic analysis of the FA composition in sesame (Sesamum indicum L.) seeds. J Am Oil Chem Soc 80 : 1157-1161 https://doi.org/10.1007/s11746-003-0835-5
  27. Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 43 : 13-25 https://doi.org/10.1016/j.vibspec.2006.06.001
  28. Scibisz I, Reich M, Bureau S, Gouble B, Causse M, Bertrand D, Renard CMGC (2011) Mid-infrared spectroscopy as a tool for rapid determination of internal quality parameters in tomato. Food Chem 125 : 1390-1397 https://doi.org/10.1016/j.foodchem.2010.10.012
  29. Soriano A, Perez-Juan PM, Vicario A. Gonzalez JM, Perez-Coello MS (2007) Determination of anthocyanins in red wine using a newly developed method based on Fourier transform infrared spectroscopy. Food Chem 104 : 1295-1303 https://doi.org/10.1016/j.foodchem.2006.10.011
  30. Terhoeven-Urselmans T, Vagen T-G, Spaargaren O, Shepherd KD (2010) Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library. Soil Sci Soc Am J 74 : 1792-1799 https://doi.org/10.2136/sssaj2009.0218
  31. Tilman BL, Gorbet DW, Person G (2006) Prediction oleic and linoleic acid content of single peanut seed using near-infrared reflectance spectroscopy. Crop Sci 46 : 2121-2126 https://doi.org/10.2135/cropsci2006.01.0031
  32. Velasco L, Goffman D, Becker HC (1999) Development of calibration equations to predict oil content and fatty acid composition in Brassicaceae germplasm by near-infrared reflectance spectroscopy. J Am Oil Chem Soc 76 : 25-30 https://doi.org/10.1007/s11746-999-0043-1
  33. Wold H (1966) Nonlinear Estimation by Iterative leasr squares procedures. In: David F, (eds), Research Papers in Statistics, Wiley, New York, pp. 411-444
  34. Wolkers WF, Oliver AE, Tablin F, Crowe JH (2004) A fourier transform infrared spectroscopy study of sugar glasses. Carb Res 339 : 1077-1085 https://doi.org/10.1016/j.carres.2004.01.016
  35. Wu JG, Shi CH, Zhang HZ (2006) Study on developing calibration model of fat acid composition in intact rapeseed by near infrared reflectance spectroscopy. Spectrosc Spect Anal 26 : 259-262
  36. Yang H, Irudayaraj J, Paradkar MM (2005) Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem 93 : 25-32 https://doi.org/10.1016/j.foodchem.2004.08.039