• Title/Summary/Keyword: PLGA

Search Result 282, Processing Time 0.023 seconds

PLGA particles and half-shells prepared by double emulsion method: characterization and release profiles of ranitidine (이중 유제 방법으로 제조된 PLGA 미립자들과 반구체:특성과 라니티딘(ranitidine)의 방출 양상)

  • Nam, Dae-Sik;Kim, Seong-Cheol;Kang, Soo-Yong;Odonchimeg, Munkhjargal;Shim, Young-Key;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.99-104
    • /
    • 2008
  • PLGA micro/nano particles encapsulating ranitidine as a hydrophilic model drug were prepared by the double-emulsion solvent evaporation method. Surface morphology investigation by scanning electron microscope (SEM) showed that the emulsification by sonication could produce nanoparticles, whereas microparticles were prepared using high speed homogenizer. Moreover, while nanohalf-shell structure instead of spherical nanoparticle could be produced by adding poloxamer into oil phase (MC) with PLGA 504H, the addition of poloxamer didn't change particle shape in case of PLGA 502H. On the other hand, microparticle with poloxamer had more surface pores than those without poloxamer. The size and polydispersity (PDI) of particles were determined by particle size analyzer. Effective diameters of particles were in the range of $400{\sim}800\;nm$ and $1200{\sim}3300\;nm$ in case of nanoparticles and microparticles, respectively. Encapsulation efficiencies were in the range of $1.2{\sim}2.9%$. The addition of poloxamer produced the particles with higher encapsulation efficiency. In vitro release study in phosphate buffer (pH 7.4) at $37^{\circ}C$ showed common large initial burst release. However, the relative slower release profile could be observed in case of microparticles. Poloxamer addition increased the release rate, which was thought to be related to the increased surface area of particles.

Preparation and Characterization of Biodegradable Hydrogels for Tissue Expander Application (조직 확장기용 생분해성 하이드로젤의 제조 및 특성분석)

  • Yuk, Kun-Young;Kim, Ye-Tae;Im, Su-Jin;Garner, John;Fu, Yourong;Park, Ki-Nam;Park, Jeong-Sook;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • In this study, we prepared and evaluated a series of biocompatible and biodegradable block copolymer hydrogels with a delayed swelling property for tissue expander application. The hydrogels were synthesized via a radical crosslinking reaction of poly(ethylene glycol) (PEG) diacrylate and poly(D,L-lactide-co-glycolide)-poly(ethylene glycol)-poly(D,L-lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer diacrylate as a swelling/degradation controller (SDC). For the synthesis of various SDCs that can lead to different degradation and swelling properties, various PLGA-PEG-PLGA triblock copolymers with different LA/GA ratios and different PLGA block lengths were synthesized and modified to have terminal acrylate groups. The resultant hydrogels were flexible and elastic even in the dry state. The in vitro degradation tests showed that the delayed swelling properties of the hydrogels could be modulated by varying the chemical composition of the biodegradable crosslinker (SDC) and the block ratio of SDC/PEG. The histopathologic observation after implantation of hydrogels in mice was performed and evaluated by macrography and microscopy. Any significant inflammation or necrosis was not observed in the implanted tissues. Due to their biocompatibility, elasticity, sufficient swelling pressure, delayed swelling and controllable degradability, the hydrogels could be useful for tissue expansion and other biomedical applications.

Preparation and Characteristics of Ipriflavone-Loaded PLGA Microspheres (이프리플라본을 함유한 생분해성 미립구의 제조와 특성분석)

  • 이진수;강길선;이종문;신준현;정제교;이해방
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • Ipriflavone (IP) stimulates proliferation and differentiation of osteoblast and also enhances calcitonin secretion in the presence of estrogen. Poly(lactide-co-glycolide) (PLCA) due to its controllable biodegradability and relatively good biocompatibility is one of the most significant candidates for the study of drug controlled release system. In this study, IP-loaded PLGA microspheres (MSs) was prepared by using conventional O/W solvent evaporation method. The size of MSs was in the range of 5~200 $mu extrm{m}$. The morphology of MSs was characterized by SEM. And, in vitro release amounts of IP were analyzed by HPLC. The highest encapsulation efficiency were obtained by using gelatin and polyvinyl alcohol (PVA) as emulsifiers. The morphology, size distribution, and in vitro release pattern of MSs were changed by several preparation parameters such as molecular weights (8, 20, 33 and 90 kg/mol), polymer concentrations (2.5, 5, 10 and 20%), emulsifier types (PVA, gelatin and Tween 80), initial drug loading amount (5, 10, 20 and 30%) and stirring speed (250, 500 and 1000 rpm). The release of IP in vitro was more prolonged over 30 days, with close to zero-order pattern by controlling the preparation parameters. The physicochemical properties of IP-loaded PLGA MSs were investigated by XRD and DSC.

Effects of Attachment and Proliferation of Retinal Pigment Epithelial Cells on Silk/PLGA Film (실크/PLGA 필름에서 실크 함량이 망막색소 상피세포의 부착 및 증식 거동에 미치는 영향)

  • Jo, Eun-Hye;Kim, Soo-Jin;Cho, Su-Jin;Lee, Ga-Young;Kim, On-You;Lee, Eun-Yong;Cho, Won-Hyung;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.289-295
    • /
    • 2011
  • Biomaterials for retinal tissue engineering must demonstrate several critical features for potential utility, including mechanical integrity, biocompatibility, and slow biodegradation. Silk film biomaterials were designed and characterized to meet these functional requirements. We prepared natural/synthetic hybrid silk/PLGA films using 0, 10, 20, 40, and 80 wt% of silk by a solvent evaporation method. MIT assay was used to confirm the number of cells attached on film at 1, 2, and 3 days, respectively. The morphology of cellular adhesion on films was also confirmed by scanning electron microscope (SEM). RT-PCR was conducted to confrrm mRNA expression of retinal pigment epithelitun (RPE) using RPE65 as a RPEs marker and the expression of cytokeratin were determined by immunofluorescence staining. We confirmed that the silk/PLGA film of 20~40 wt% silk was superior for the adhesion and proliferation of RPEs.

Mechanical Property and Cell Compatibility of Silk/PLGA Hybrid Scaffold; In Vitro Study (실크/PLGA 하이브리드 지지체의 기계적 물성과 세포친화력; in vitro 연구)

  • Song, Yi-Seul;Yoo, Han-Na;Eum, Shin;Kim, On-You;Yoo, Suk-Chul;Kim, Hyung-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.189-195
    • /
    • 2011
  • The design of new bioactive scaffolds offering physiologic environment for tissue formation is an important frontier in biomaterials research. In this study, we performed compressive strength, water-uptake ability, and SEM analysis for physical property assessment of 3-D silk/PLGA scaffold, and investigated the adhesion, proliferation, phenotype maintenance, and inflammatory responses of RAW 264.7 and NIH/3T3 for cell compatibility. Scaffolds were prepared by the solvent casting/salt leaching method and their compressive strength and water-uptake ability were excellent at 20 wt% silk content. Result of cell compatibility assay showed that inflammatory responses distinctly decreased, and initial adhesion and proliferation were maximized at 20 wt% silk content. In conclusion, we suggest that silk/PLGA scaffolds may be useful to tissue engineering applications.

Regeneration of Intervertebral Disc Using Poly(lactic-co-glycolic acid) Scaffolds Included Demineralized Bone Particle In Vivo (In vivo 상에서 탈미네랄화된 골분이 함유된 PLGA 지지체를 이용한 추간판 디스크 재생)

  • Jang, Ji Eun;Kim, Hye Yoon;Song, Jeong Eun;Lee, Dongwon;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.669-676
    • /
    • 2013
  • Demineralized bone particle (DBP) is a biomaterial used widely in the field of tissue engineering. In this study, in order to study the effect of DBP/poly(lactic-co-glycolic acid) (PLGA) scaffold on disc regeneration in vivo environment, we prepared the porous DBP/PLGA hybrid scaffold. Disc defect was induced by removing the nucleus pulposus tissue after incision the annulus fibrosus tissue in half and scaffolds were transplanted. After 1, 2 and 3 months later, the extracted discs were confirmed by collagen synthesis and glycosaminoglycan (sGAG). We conducted histology (H&E, Safranin-O, Alcian blue, Type I Collagen, Type II Collagen). From the results, it was confirmed that collagen and sGAG content were high in DBP/PLGA scaffold, and the regeneration of intervertebral disc was possible.

An in vitro study of mesenchymal stem cell proliferation on titanium discs coated with rhTGF-β2/PLGA by electrospray (Electrospray법으로 rhTGF-β2/PLGA 복합체를 코팅한 티타늄에서의 간엽줄기세포 증식에 관한 연구)

  • Kim, Joohyung;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Woo-Sung;Lee, Joo-Hee;Park, Ji-Man
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.120-125
    • /
    • 2016
  • Purpose: The purpose of this study is to identify the effect of mesenchymal stem cell proliferation on recombinant human transforming growth factor-beta (rhTGF-${\beta}2$) / poly (D,L-lactide-co-glycolide) (PLGA) treated titanium discs by electrospray. Materials and methods: Anodized titanium surface coated with PLGA was used for a control group to compare anodized titanium surface coated with 125 ng/ml and 500 ng/ml rhTGF-${\beta}2$ as test groups. Atomic force microscope (AFM) test was utilized to determine the difference in coating surface roughness, and field-emission scanning electron microscopy (FE-SEM) was taken to visualize even distribution of coating particles on titanium discs. The mesenchymal stem cell proliferation was tested by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl-tetrazolium bromide) assay on 1st, 4th, 7th days. Results: According to AFM results, there was no statistically significant difference in titanium discs treated with PLGA and with rhTGF-${\beta}2$/PLGA (P>.05). MTT assay test results showed that there was statistically significant difference in mesenchymal stem cell proliferation on test groups compared to control groups at 7th day, and cell viability on discs coated with rhTGF-${\beta}2$ was significantly higher than control groups (P<.05). Conclusion: Titanium surface coated with rhTGF-${\beta}2$/PLGA shows statistically significant higher cell proliferation and the titanium surface coated with the higher concentration of rhTGF-${\beta}2$ presents faster cell growth activity.

Preparation and Release Behavior of Albumin-Loaded PLGA Scaffold by Ice Particle Leaching Method (얼음입자추출법을 이용한 알부민 함유 PLGA 담체의 제조 및 방출 거동)

  • Hong Keum Duck;Seo Kwang Su;Kim Soon Hee;Kim Sun Kyung;Khang Gilson;Shin Hyung Sik;Kim Moon Suk;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.282-287
    • /
    • 2005
  • A novel ice particle leaching method for fabrication of porous and biodegradable PLGA scaffold has been proposed for the application to tissue engineering. After uniform mixing of poly(L-lactide-co-glycolide) (PLGA) and bovine serum albumin-fluorescein isothiocyanate (FITC-BSA), the FITC-BSA loaded scaffold was fabricated by adding various ratio of ice particle. The release profiles of FITC-BSA were examined using pH 7.4 PBS for 28 days at $37^{circ}$. The release amount was determined by fluorescence intensity by using the fluorescence spectrophotometer and the morphological change of the scaffolds was observed by scanning electron microscope. The release initial burst of BSA containing scaffolds was lower than that of simple dipping scaffolds resulting in constant release aspect. Although the BSA concentration increased. the initial burst was not increased. As a result of this study, it can be suggested that ice particle leaching method for the tissue engineered scaffold miff be very useful and it is possible to impregnate with water soluble factors like cytokine. We suggest that ice particle leaching method may be useful to tissue engineered organ regeneration.

Interaction of Bone Marrow Stromal Stem Cells with Adhesive Protein and Polypeptide-adsorbed Poly(lactide-co-glycolide) Scaffolds (골수유래 간엽줄기세포와 점착성 단백질 및 폴리펩타이드가 흡착된(락티이드/글리콜라이드) 공중합체 지지체와의 상호작용)

  • Choi, Jin-San;Lee, Sang-Jin;Jang, Ji-Wook;Khang, Gil-Son;Lee, Young-Moo;Lee, Bong;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.397-404
    • /
    • 2003
  • The interaction of cell adhesive protein and polypeptide with bone marrow stromal stem cells (BMSCs) grown in tissue engineered films and scaffolds were examined. Several proteins or polypeptide known as cell-adhesive were coated adsorption on poly(lactide-co-glycolide) (PLGA) films and scaffolds and adhesion and proliferation behavior of BMSC on those surfaces were compared. The protein and polypeptide used include collagen IV, fibrinogen, laminin, gelatin, fibronectin, and poly(L-lysine). The protein and polypeptide were adsorbed on the PLGA film surfaces with almost monolayer coverage except poly(L-lysine). BMSCs were cultured for 1, 2, and 4 days on the protein- or polypeptide-adsorbed PLGA films and scaffolds. The cell adhesion and proliferation behaviors were assessed by sulforho damine B assay. It was observed that the protein- or polypeptide-adsorbed surfaces showed better cell adhesion and proliferation than the control.