Browse > Article

Mechanical Property and Cell Compatibility of Silk/PLGA Hybrid Scaffold; In Vitro Study  

Song, Yi-Seul (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University)
Yoo, Han-Na (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University)
Eum, Shin (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University)
Kim, On-You (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University)
Yoo, Suk-Chul (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University)
Kim, Hyung-Eun (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University)
Lee, Dong-Won (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University)
Khang, Gil-Son (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University)
Publication Information
Polymer(Korea) / v.35, no.3, 2011 , pp. 189-195 More about this Journal
Abstract
The design of new bioactive scaffolds offering physiologic environment for tissue formation is an important frontier in biomaterials research. In this study, we performed compressive strength, water-uptake ability, and SEM analysis for physical property assessment of 3-D silk/PLGA scaffold, and investigated the adhesion, proliferation, phenotype maintenance, and inflammatory responses of RAW 264.7 and NIH/3T3 for cell compatibility. Scaffolds were prepared by the solvent casting/salt leaching method and their compressive strength and water-uptake ability were excellent at 20 wt% silk content. Result of cell compatibility assay showed that inflammatory responses distinctly decreased, and initial adhesion and proliferation were maximized at 20 wt% silk content. In conclusion, we suggest that silk/PLGA scaffolds may be useful to tissue engineering applications.
Keywords
PLGA; silk; hybrid scaffold; cell compatibility;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. L. Urban, H. M. Shepard, J. L. Rothstein, B. J. Sugarman, and J. Schreiber, Proc. Natl. Acad. Sci., 83, 5233(1986).   DOI   ScienceOn
2 C. Nathan, J. FASEB, 6, 3051 (1992).   DOI
3 C. Nathan, Cell, 82, 873 (1995).   DOI   ScienceOn
4 M. O. Beak, S. H. Kim, J. W. So, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Tissue Eng. Regen. Med., 4, 571 (2007).
5 B. Wang, J. Han, Y. Gao, Z. Xiao, B. Chen, X. Wang, W. Zhao, and J. Dai, Neurosci. Lett., 421, 191 (2007).   DOI   ScienceOn
6 V. Karageorgiou and D. L. Kaplan, Biomaterials, 26, 5474 (2005).   DOI   ScienceOn
7 H. K. Hong, S. H. Kim, S. K. Lee, Y. H. Lee, S. J. Kim, O. Y. Kim, D. Lee, J. M. Rhee, Y. Son, and G. Khang, Tissue Eng. Regen. Med., 6, 1029 (2009).
8 J. W. Jang, B. Lee, C. W. Han, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 382 (2006).
9 J. C. Keller, G. B. Schneider, C. M. Stanford, and B. Kellogg, Implant Dent, 12, 175 (2003).   DOI   ScienceOn
10 J. K. Park, News & Information for Chemical Engineers, 21, 613 (2003).
11 D. J. Mooney, L. Cima, R. Langer, L. K. Hansen, D. E. Injegber, and J. P. Vacanti, Mat. Res. Soc. Symp. Proc., 252, 345 (1992).
12 G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplaln, Biomaterials, 24, 401 (2003).   DOI   ScienceOn
13 G. R. Kose, F. Korkusuz, and P. Korkusuz, Tissue Eng., 10, 1234 (2004).   DOI
14 Y. Iwasaki, S. Sawada, and K. Ishihara, Biomaterials, 23, 3897 (2002).   DOI   ScienceOn
15 C. Gerad, Nature Immunol., 6, 366 (2005).   DOI   ScienceOn
16 S. D. Patil, F. Papadmitrakopoulos, and D. J. Burgess, J. Control. Release, 117, 68 (2007).   DOI   ScienceOn
17 S. H. Baek, J. H. Lee, J. W. Lee, M. L. Cho, S. I. Kim, J. I. Kim, D. S. Kim, S. H. Lee, and G. T. Kim, J. Kor. Rheum. Assoc., 15, 2 (2008).
18 U. Klueh, D. I. Dorsky, F. Moussy, and D. L. Kreutzer, J. Biomed. Mater. Res. A, 67, 838 (2003).
19 B. S. Choi, S. H. Kim, S. J. Yoon, H. J. Ha, M. S. Kim, Y. I. Yang, Y. Son, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 3, 295 (2006).
20 S. H. Kim, K. S. Park, B. S. Choi, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Adv. Exp. Med. Biol., 585, 167 (2006).
21 Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2006).
22 H. H. Hong, S. H. Kim, A. Y. Oh, N. R. Jeon, S. H. Jung, S. J. Lee, M. Dyke, J. J. Yoo, Y. Son, J. M. Rhee, and G. Khang, Tissue Eng. Regen. Med., 5, 4 (2008).
23 E. I. Shishatskaya, T. G. Volova, A. P. Puzyr, and O. A. Mogilnaya, J. Mater. Sci. : Mater. Med., 15, 719 (2004).   DOI
24 T. Volova, E. Shishatskaya, V. Sevastianov, S. Efremov, and O. Mogilnaya, Biochem. Eng. J., 16, 125 (2003).   DOI   ScienceOn
25 Y. L. Cui, A. D. Qi, W. G. Liu, S. H. Wang, H. Wang, D. M. Ma, and K. D. Yao, Biomaterials, 24, 3859 (2003).   DOI   ScienceOn
26 N. Minoura, S. I. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, Biochem. Biophys. Res. Commun., 208, 511 (1995).   DOI   ScienceOn
27 N. Minoura, M. Tsukada, and M. Nagura, Polymer, 31, 26, (1990).
28 M. Santin, A. Motta, G. Freddi, and M. Gannas, J. Biomed. Mater. Res., 46, 382 (1999).   DOI   ScienceOn
29 N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai, J. Biomed. Mater. Res., 29, 1215 (1995).   DOI   ScienceOn
30 G. Altman, R. L. H. Horan, J. Moreau, I. Martin, J. Richmond, and D. L. Kaplan, Biomaterials, 23, 4131 (2002).   DOI   ScienceOn
31 H. K. Soong and K. R. Kenyon, Ophthalmology, 91, 479 (1984).   DOI
32 S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, J. Biomed. Mater. Res., 54, 139 (2001).   DOI   ScienceOn
33 N. Minoura, M. Tsukada, and M. Nagura, Biomaterials, 11, 430 (1990).   DOI   ScienceOn
34 J. Qian, Y. Liu, H. Liu, T. Yu, and J. Deng, Biosens. Bioelectron., 12, 1213 (1997).   DOI   ScienceOn
35 T. Hanawa, A. Watanabe, T. Tsuchiya, R. Ikoma, M. Hidaka, and M. Sugihara, Chem. Pharm. Bull., 42, 282(1995).
36 B. Panilaitis, G. H. Altman, J. Chen, H. J. Jang, V. Karageorgiou, and D. L. Kaplan, Biomaterials, 24, 3079 (2003).   DOI   ScienceOn
37 N. R. Jeon, E. H. Jo, H. J. Park, J. S. Choi, S. J. Lee, M. V. Dyke, J. J. Lee, D. Lee, J. M. Rhee, and G. Khang, Tissue Eng. Regen. Med., 6, 819 (2009).
38 S. M. Kim, S. H. Kim, C. M. Kim, A. Y. Oh, G. A. Kim, I. W. Lee, J. M. Rhee, G. Khang, M. S. Kim, and H. B. Lee, Tissue Eng. Regen. Med., 4, 179 (2007).
39 Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2007).
40 G. Khang, M. S. Kim, S. H. Cho, and H. B. Lee, Tissue Eng. Regen. Med., 1, 9 (2004).
41 H. H. Hong, S. H. Kim, A. Y. Oh, N. R. Jeon, S. H. Jung, S. J. Lee, M. V. Dyke, J. J. Yoo, Y. Son, J. M. Rhee, and G. Khang, Tissue Eng. Regen. Med., 5, 861 (2008).
42 S. Petit-Zeman, Nature Biotech., 19, 201 (2001).   DOI   ScienceOn
43 S. J. Lee, G. Khang, J. H. Lee, Y. M. Lee, and H. B. Lee, Polymer(Korea), 24, 877 (2000).
44 G. Khang, S. J. Lee, I. Lee, and H. B. Lee, Polym. Sci. Tech., 13, 4 (2002).
45 I. G. Park, S. H. Oh, and J. H. Lee, Tissue Eng. Regen. Med., 1, 164 (2004).
46 W. Y. Jang, S. H. Kim, I. Lee, M. S. Kim, J. M. Rhee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 2, 100 (2005).
47 K. S. Park, S. M. Kim, M. S. Kim, I. Lee, J. M. Rhee, H. B. Lee, and G. Khang, Polymer(Korea), 30, 455 (2006).
48 S. L. Ishaug-Riley, L. E. Okun, G. Prado, M. A. Applegate, and A. Ratcliffe, Biomaterials, 20, 2245 (1999).   DOI   ScienceOn
49 A. G. Mikos and J. S. Temenoff, Elec. J. Biotech., 3, 1 (2000).
50 R. Langer and D. Tirrell, Nature, 428, 487 (2004).   DOI   ScienceOn