골수유래 간엽줄기세포와 점착성 단백질 및 폴리펩타이드가 흡착된(락티이드/글리콜라이드) 공중합체 지지체와의 상호작용

Interaction of Bone Marrow Stromal Stem Cells with Adhesive Protein and Polypeptide-adsorbed Poly(lactide-co-glycolide) Scaffolds

  • 최진산 (전북대학교 유기신물질공학과) ;
  • 이상진 (한양대학교 화학공학과) ;
  • 장지욱 (부경대학교 고분자공학과) ;
  • 강길선 (전북대학교 유기신물질공학과) ;
  • 이영무 (한양대학교 화학공학과) ;
  • 이봉 (부경대학교 고분자공학과) ;
  • 이해방 (한국화학연구원 생체의료고분자팀)
  • Choi, Jin-San (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Lee, Sang-Jin (Department of Chemical Engineering, Hanyang University) ;
  • Jang, Ji-Wook (Department of Polymer Engineering, Pukyong National University) ;
  • Khang, Gil-Son (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Lee, Young-Moo (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Bong (Department of Polymer Engineering, Pukyong National University) ;
  • Lee, Hai-Bang (Biomaterials Laboratory, Korea Research Institute of Chemical Technology)
  • 발행 : 2003.09.01

초록

조직공학적 지지체에서의 골수유래 간엽줄기세포의 점착과 성장에 있어서 세포 점착성 단백질과 폴리펩타이드와의 상호작용을 조사하였다. 세포 점착성 물질로 알려진 단백질이나 폴리펩타이드는 락타이드-글리콜라이드 공중합체인 PLGA 필름과 지지체에 흡착하여 코팅되었으며, 이에 골수유래 간엽줄기 세포의 점착과 성장 거동을 비교하였다. 이들 단백질과 폴리펩타이드는 콜라겐 IV형과 피브리노겐, 라미닌, 젤라틴, 피브로넥틴, 폴리(L-라이신)이 사용되었다. 이중 폴리(L-라이신)을 제외한 단백질과 폴리펩타이드는 PLGA 필름 표면에 거의 단층으로 덮어져 흡착되었으며, PLGA 필름과 지지체에서 골수유래 간엽줄기세포가 1일과 2일, 4일간 배양되었다. 세포의 점착과 성장 거동은 sulforhodamine B법으로 평가하였다. PLGA 필름과 지지체에 단백질이나 폴리펩타이드가 흡착되지 않은 표면보다는 흡착된 표면에서의 세포의 점착과 성장이 우수하였다.

The interaction of cell adhesive protein and polypeptide with bone marrow stromal stem cells (BMSCs) grown in tissue engineered films and scaffolds were examined. Several proteins or polypeptide known as cell-adhesive were coated adsorption on poly(lactide-co-glycolide) (PLGA) films and scaffolds and adhesion and proliferation behavior of BMSC on those surfaces were compared. The protein and polypeptide used include collagen IV, fibrinogen, laminin, gelatin, fibronectin, and poly(L-lysine). The protein and polypeptide were adsorbed on the PLGA film surfaces with almost monolayer coverage except poly(L-lysine). BMSCs were cultured for 1, 2, and 4 days on the protein- or polypeptide-adsorbed PLGA films and scaffolds. The cell adhesion and proliferation behaviors were assessed by sulforho damine B assay. It was observed that the protein- or polypeptide-adsorbed surfaces showed better cell adhesion and proliferation than the control.

키워드

참고문헌

  1. Polymer(Korea) v.23 G.Khang;J.H.Jeon;J.C.Cho;H.B.Lee
  2. J. Biomater. Sci. Polym. Ed. v.10 J.H.Lee;S.J.Lee;G.Khang;H.B.Lee https://doi.org/10.1163/156856299X00351
  3. Korea Polym. J. v.7 G.Khang;S.J.Lee;J.H.Lee;H.B.Lee
  4. Bio-Med. Mater. Eng. v.9 G.Khang;S.J.Lee;J.H.Lee;Y.S.Kim;H.B.Lee
  5. J. Colloid Inter. Sci. v.230 J.H.Lee;S.J.Lee;G.Khang;H.B.Lee https://doi.org/10.1006/jcis.2000.7080
  6. Polymer(Korea) v.24 S.J.Lee;G.Khang;J.H.Lee;Y.M.Lee;H.B.Lee
  7. J. Biomater. Sci. Polym. Ed. v.13 S.J.Lee;G.Khang;Y.M.Lee;H.B.Lee https://doi.org/10.1163/156856202317414375
  8. Macromol. Res. v.10 S.J.Lee;G.Khang;I.Y.Kim;Y.M.Lee;H.B.Lee https://doi.org/10.1007/BF03218265
  9. Biomaterials Res. v.6 J.S.Choi;S.J.Lee;G.Khang;I.Lee;H.B.Lee
  10. Science v.260 R.Langer;J.P.Vacanti https://doi.org/10.1126/science.8493529
  11. Science v.284 D.Ferber https://doi.org/10.1126/science.284.5413.422
  12. Science v.284 N.L'Heureux;L.Germain;F.A.Auger
  13. Polymer Sci. Tech. v.10 G.Khang;I.Jo;J.H.Lee;H.B.Lee
  14. Polymer Sci. Tech. v.10 G.Khang;J.H.Lee;H.B.Lee
  15. Tissue Engineering: Concepts and Application J.J.Yoo;I.Lee
  16. Tissue Engineering and Regenerative Medicine Polymer Cell Interaction G.Khang;S.J.Lee;J.M.Rhee;H.B.Lee;J.J.Yoo(ed.); I.Lee(ed.)
  17. Mat. Res. Soc. Symp. Proc. v.394 T.H.Kim;C.Jannetta;J.P.Vacanti;J.Upton;C.A.Vacanti
  18. Tissue Eng. v.1 M.J.Yaszemski;R.G.Payne;W.C.Hayes;R.Langer;T.B.Aufdemorte;A.G.Mikos https://doi.org/10.1089/ten.1995.1.41
  19. Biotech. Bioeng. v.43 H.Miyoshi;K.Yanagi;H.Fukuda;N.Ohshima https://doi.org/10.1002/bit.260430713
  20. J. Biomed. Mater. Res. v.37 C.H.Thomas;C.D.McFarland;M.L.Jenkins;A.Rezania;J.G.Steele https://doi.org/10.1002/(SICI)1097-4636(199710)37:1<81::AID-JBM10>3.0.CO;2-T
  21. J. Biomed. Mater. Res. v.60 B.K.Mann;J.L.West https://doi.org/10.1002/jbm.10042
  22. Atherosclerosis v.96 M.Naito;C.Funaki;T.Hayashi;K.Yamada;K.Asai;N.Yoshimine;F.Kuzuya https://doi.org/10.1016/0021-9150(92)90069-S
  23. Biomaterials v.22 R.A.Quirk;W.C.Chan;M.C.Davies;S.J.B.Tendler;K.M.Shakesheff https://doi.org/10.1016/S0142-9612(00)00250-7
  24. Korea Polym. J. v.8 G.Khang;S.J.Lee;Y.M.Lee;J.H.Lee;H.B.Lee
  25. Nature v.414 P.Bianco;P.G.Robey https://doi.org/10.1038/35102181
  26. Experimental Hemarology v.28 A.Banfi;A.Muraglia;B.Dozin;M.Mastrogiacomo;R.Cancedda;R.Quarto https://doi.org/10.1016/S0301-472X(00)00160-0
  27. Clin. Otolaryngol. v.27 A.Vats;N.S.Tolley;J.M.Polak;L.D.K.Buttery https://doi.org/10.1046/j.1365-2273.2002.00579.x
  28. Biomaterials v.15 A.G.Mikos;M.D.Lyman;L.E.Freed;R.Langer https://doi.org/10.1016/0142-9612(94)90197-X
  29. J. Biomed. Mater. Res. v.42 J.Cao;L.Niklason;R.Langer https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<417::AID-JBM11>3.0.CO;2-D
  30. Biomaterials Res. v.2 J.H.Lee;D.K.Kim;G.Khang;J.S.Lee
  31. J. Biomed. Mater. Res. v.57 M.Shen;T.A.Hobett https://doi.org/10.1002/1097-4636(20011205)57:3<336::AID-JBM1176>3.0.CO;2-E