• 제목/요약/키워드: PLASMA SURFACE TREATMENT

검색결과 991건 처리시간 0.027초

저온 공정 PVP게이트 절연체를 이용한 고성능 플렉서블 유기박막 트랜지스터의 계면처리 효과 (Interface Treatment Effect of High Performance Flexible Organic Thin Film Transistor (OTFT) Using PVP Gate Dielectric in Low Temperature)

  • 윤호진;백규하;신홍식;이가원;이희덕;도이미
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.12-16
    • /
    • 2011
  • In this study, we fabricated the flexible pentacene TFTs with the polymer gate dielectric and contact printing method by using the silver nano particle ink as a source/drain material on plastic substrate. In this experiment, to lower the cross-linking temperature of the PVP gate dielectric, UV-Ozone treatment has been used and the process temperature is lowered to $90^{\circ}C$ and the surface is optimized by various treatment to improve device characteristics. We tried various surface treatments; $O_2$ Plasma, hexamethyl-disilazane (HMDS) and octadecyltrichlorosilane (OTS) treatment methods of gate dielectric/semiconductor interface, which reduces trap states such as -OH group and grain boundary in order to improve the OTFTs properties. The optimized OTFT shows the device performance with field effect mobility, on/off current ratio, and the sub-threshold slope were extracted as $0.63cm^2 V^{-1}s^{-1}$, $1.7{\times}10^{-6}$, and of 0.75 V/decade, respectively.

SAC 305솔더와 ENIG 기판의 접합강도에 미치는 저주파 수소라디칼처리의 영향 (Improvement of Solder Joint Strength in SAC 305 Solder Ball to ENIG Substrate Using LF Hydrogen Radical Treatment)

  • 이아름;조승재;박재현;강정윤
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.99-106
    • /
    • 2011
  • Joint strength between a solder ball and a pad on a substrate is one of the major factors which have effects on electronic device reliability. The effort to improve solder joint strength via surface cleaning, heat treatment and solder composition change have been in progress. This paper will discuss the method of solder ball joint strength improvement using LF hydrogen radical cleaning treatment and focus on the effects of surface treatment condition on the solder ball shear strength and interfacial reactions. In the joint without radical cleaning, voids were observed at the interface. However, the specimens cleaned by hydrogen-radical didn't have voids at the interface regardless of cleaning time. The shear strength between the solder ball and the pad was increased over 120%(about 800gf) when compared to that without the radical treatment (680gf) under the same reflow condition. Especially, at the specimen treated for 5minutes, ball shear strength was considerably increased over 150%(1150gf). Through the observation of fracture surface and cross-section microstructure, the increase of joint strength resulted from the change of fracture mode, that is, from the solder ball fracture to IMC/Ni(P) interfacial fracture. The other cases like radical treated specimen for 1, 3, 7, 9min. showed IMC/solder interfacial fracture rather than fracture in the solder ball.

기판 막질에 따른 $TEOS-O_3$ 산화막의 증착 특성 (Deposition Characteristics of $TEOS-O_3$ Oxide Film on Substrate)

  • 안용철;박인선;최지현;정우인;이정규;이종길
    • 한국재료학회지
    • /
    • 제2권1호
    • /
    • pp.76-82
    • /
    • 1992
  • $TEOS-O_3$ 산화막은 깔개층 물질에 따라 증착속도가 변하는 특성을 나타낸다. 본 논문에서는 $TEOS-O_3$ 산화막의 깔개층 물질 의존성 이외에도 배선 밀도, 배선 간격에 따라 증착속도가 달라지는 패턴 의존성에 대하여 조사하였다. 또한 $TEOS-O_3$ 산화막의 깔개층 물질 의존성 및 패턴 의존성을 줄이기 위해 다층 배선에서 1차 배선후에 깔개층, 즉 TEOS-base 프라즈마 산화막 및 $SiH_4-base$ 프라즈마 산화막을 증착했을 때 $TEOS-O_3$ 산화막의 증착 특성을 조사하였다. 그리고 그 깔개층 물질에 $N_2$ 프라즈마 처리를 했을 때 $TEOS-O_3$ 산화막의 증착 특성에 대해 조사하였다. 그 결과 $TEOS-O_3$ 산화막에서 기판 위에 배선 밀도와 배선 간격에 따른 의존성은 깔개층물질이 $SiH_4-base$ 일때보다 TEOS-base 프라즈마 산화막인 경우 $N_2$ 프라즈마 처리를 하면 깔개층 물질 표면이 O-Si-N화 되므로써 의존성이 사라지게 된다.

  • PDF

유해가스 처리를 위한 Confined Plasma Source 개발 (Development of Confined Plasma Source for Hazardous Gas Treatment)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권3호
    • /
    • pp.135-140
    • /
    • 2020
  • 반도체 공정에서 필수적인 공정가스가 유해가스이기 때문에 이를 친환경적으로 해결하는 것이 필수과제이다. 현재 반도체 공정에서 사용되는 세정기술은 대부분이 1970년대 개발된 과산화수소를 근간으로 하는 습식 세정으로, 표면의 입자를 제거하기 위한 SC-1 세정액은 암모니아와 과산화수소 혼합액을 사용하고 있다. 따라서 환경적 문제를 유발하며, 또한 과도한 용수 사용으로 인한 경제적 문제도 심각하다. 이러한 이유로 본 연구를 통한 개발 제품은 챔버 출구에서 나오는 공정 유해가스를 진공펌프에 입력되기 전 가스를 분해하여 해가 없는 가스로 만들거나 소각과 동시에 펌프에 가스의 성분이 증착되어 반도체 공정의 환경적 문제를 해결하고자 한다. 본 논문에서는 반도제 공정에서 필수 불가결하게 사용되는 유해가스(N2, CF4, SF6⋯. 등)를 사람에게 무해한 가스로 치환하거나 플라스마로 소각하여 환경을 살리고 생산성 향상이 되도록 제안된 CPS (Confined Plasma Source)를 연구하고자 한다.

대기압 플라즈마를 이용한 P타입 태양전지 웨이퍼 도핑 연구 (Study of P-type Wafer Doping for Solar Cell Using Atmospheric Pressure Plasma)

  • 윤명수;조태훈;박종인;김상훈;김인태;최은하;조광섭;권기청
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.120-123
    • /
    • 2014
  • Thermal doping method using furnace is generally used for solar-cell wafer doping. It takes a lot of time and high cost and use toxic gas. Generally selective emitter doping using laser, but laser is very high equipment and induce the wafer's structure damage. In this study, we apply atmospheric pressure plasma for solar-cell wafer doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (1 kHz ~ 100 kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer (120 ohm/square). SIMS (Secondary Ion Mass Spectroscopy) are used for measuring wafer doping depth and concentration of phosphorus. We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태 (Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

Effect of ZnO Nanoparticle Presence on SCC Mitigation in Alloy 600 in a Simulated Pressurized Water Reactors Environment

  • Sung-Min Kim;Woon Young Lee;Sekown Oh;Sang-Yul Lee
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.401-411
    • /
    • 2023
  • This study investigates the synthesis, characterization, and application of zinc oxide (ZnO) nanoparticles for corrosion resistance and stress corrosion cracking (SCC) mitigation in high-temperature and high-pressure environments. The ZnO nanoparticles are synthesized using plasma discharge in water, resulting in rod-shaped particles with a hexagonal crystal structure. The ZnO nanoparticles are applied to Alloy 600 tubes in simulated nuclear power plant atmospheres to evaluate their effectiveness. X-ray diffraction and X-ray photoelectron spectroscopy analysis reveals the formation of thermodynamically stable ZnCr2O4and ZnFe2O4 spinel phases with a depth of approximately 35 nm on the surface after 240 hours of treatment. Stress corrosion cracking (SCC) mitigation experiments reveal that ZnO treatment enhances thermal and mechanical stability. The ZnO-treated specimens exhibit increased maximum temperature tolerance up to 310 ℃ and higher-pressure resistance up to 60 bar compared to non-treated ZnO samples. Measurements of crack length indicate reduced crack propagation in ZnO-treated specimens. The formation of thermodynamically stable Zn spinel structures on the surface of Alloy 600 and the subsequent improvements in surface properties contribute to the enhanced durability and performance of the material in challenging high-temperature and high-pressure environments. These findings have significant implications for the development of corrosion-resistant materials and the mitigation of stress corrosion cracking in various industries.

SCM435 구조용 합금강의 플라즈마 질화에 미치는 전처리(Q/T)의 영향 (The Effect of Pretreatment(Q/T) on the Plasma Nitriding of SCM435 Structural Steel)

  • 임영필;박대철;이재식;유용주
    • 열처리공학회지
    • /
    • 제11권2호
    • /
    • pp.99-110
    • /
    • 1998
  • The effects of pre-heat treatment(Q/T) on microstructure and hardness of SCM435 structural steel nitrided by micro-pulse plasma was investigated. The quenching and tempering temperatures for obtaining matrix hardness of SCM435 steel on range of HRC30 to HRC40 desired for machine parts were about $860^{\circ}C$ and $500^{\circ}C$ respectively. The case depth of SCM435 nitrided at $480^{\circ}C$ for 5 hours was independent of pre-heat treatment condition and was approximately $150{\mu}m$. However, hardness and compactness of nitrified layer on Q/T treated specimen were more heigher than annealed specimen. The case depth increased linearly with the increase of nitriding temperature, however, the hardness of nitrified layer decreased with the temperature. Phase mixture of ${\gamma}^{\prime}$-phase($Fe_4N$) and ${\varepsilon}$-phase($Fe_3N$) were detected by XRD analysis in the nitrified layer formed at optimum nitriding condition, and only single ${\gamma}^{\prime}$-phase was detected in the nitrified layer formed at higher nitriding temperature such as $540^{\circ}C$. The optimum nitriding temperature was approximately $480^{\circ}C$ which is lower than tempering temperature for preventing softening behavior of SCM435 matrix during nitriding process and the surface hardness of nitrified layer obtained by optimum preheat treatment condition was about Hv930.

  • PDF

질소 분극면을 갖는 N형 질화물반도체의 접촉저항 감소를 위한 산소 플라즈마 효과에 관한 연구 (Study of Oxygen Plasma Effects to Reduce the Contact Resistance of n-type GaN with Nitrogen Polarity)

  • 남태양;김동호;이완호;김수진;이병규;김태근;조영창;최연식
    • 한국진공학회지
    • /
    • 제19권1호
    • /
    • pp.10-13
    • /
    • 2010
  • 본 논문은 N-face n-type GaN 표면에 산소 플라즈마 처리에 의해서 오믹전극과 접촉 저항을 낮추기 위한 연구를 하였다. 120초 산소 플라즈마 처리후 Ti (50 nm) / Al (35 nm)을 증착한 결과 오믹 전극을 구현하였으며, $1.25{\times}10^{-3}\;{\Omega}cm^2$의 접촉저항을 보였다. 이는 산소 플라즈마 처리가 기존의 플라즈마 처리와 같이 질소결원이 발생하였기 때문이다. 이를 통해 쇼트키장벽 높이(SBH)이 낮아지게 되었고, 오믹 전극및 플라즈마 처리를 안 한 경우보다 더 낮은 접촉저항의 결과를 획득하였다.

Mechanical Properties of Vapor Grown Carbon Fiber/Epoxy Nanocomposites With Different Dispersion Methods

  • Khuyen, Nguyen Quang;Kim, Byung-Sun;Kim, Jin-Bong;Lee, Soo
    • 한국응용과학기술학회지
    • /
    • 제24권3호
    • /
    • pp.264-271
    • /
    • 2007
  • Effect of dispersion methods for Vapor Grown Carbon Fibers (VGCF) in epoxy caused the change in mechanical properties of VGCF/epoxy nanocomposites, such as tensile modulus and tensile strength. The influence of VGCF types - atmospheric plasma treated (APT) VGCF and raw VGCF - and their contents was discussed in detail. Treating VGCF with atmospheric plasma enhanced the surface energy, therefore improved the bonding strength with epoxy matrix. Two different methods used to disperse VGCF were ultrasonic and mechanical homogenizer methods. When using dispersion solutions, the VGCF demonstrated good dispersion in ethanol in both homogenizer and ultrasonic method. The uniform dispersion of VGCF was investigated by scanning electron microscopy (SEM) which showed well-dispersion of VGCF in epoxy matrix. The tensile modulus of raw VGCF/epoxy nanocomposites obtained by ultrasonic method was higher than that of one obtained by homogenizer method. APT VGCF/epoxy nanocomposites showed higher tensile strength than that of raw VGCF/epoxy nanocomposites.