DOI QR코드

DOI QR Code

Mechanical Properties of Vapor Grown Carbon Fiber/Epoxy Nanocomposites With Different Dispersion Methods

  • Khuyen, Nguyen Quang (Department of Chemical Engineering, Changwon National University) ;
  • Kim, Byung-Sun (Composite Materials Group, Korea Institute of Machinery and Materials) ;
  • Kim, Jin-Bong (Composite Materials Group, Korea Institute of Machinery and Materials) ;
  • Lee, Soo (Department of Chemical Engineering, Changwon National University)
  • Published : 2007.09.30

Abstract

Effect of dispersion methods for Vapor Grown Carbon Fibers (VGCF) in epoxy caused the change in mechanical properties of VGCF/epoxy nanocomposites, such as tensile modulus and tensile strength. The influence of VGCF types - atmospheric plasma treated (APT) VGCF and raw VGCF - and their contents was discussed in detail. Treating VGCF with atmospheric plasma enhanced the surface energy, therefore improved the bonding strength with epoxy matrix. Two different methods used to disperse VGCF were ultrasonic and mechanical homogenizer methods. When using dispersion solutions, the VGCF demonstrated good dispersion in ethanol in both homogenizer and ultrasonic method. The uniform dispersion of VGCF was investigated by scanning electron microscopy (SEM) which showed well-dispersion of VGCF in epoxy matrix. The tensile modulus of raw VGCF/epoxy nanocomposites obtained by ultrasonic method was higher than that of one obtained by homogenizer method. APT VGCF/epoxy nanocomposites showed higher tensile strength than that of raw VGCF/epoxy nanocomposites.

Keywords

References

  1. K. Lozano and V. Diaz, Alignment and Mechanical Characterization of Vapor Grown Carbon Nanofibers in Polyethylene, J. Rhecfuture, 38, 902 (2002)
  2. A. Chatterjee and B.L. Deopura, High modulus and high strength PP nanocomposite filament, Composites, Part A 37, 813 (2005)
  3. J. Zeng, B. Saltysiak, W. S. Johnson, D. A. Schiral, and S. Kumar, Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites, Composites, 35, 173 (2004) https://doi.org/10.1016/S1359-8368(03)00051-9
  4. J. C. Lin, L. C. Chang, M. H. Nien, and H. L. Ho, Mechanical behavior of various nanoparticle filled composites at low-velocity impact, Composite Structures, 74, 30 (2006) https://doi.org/10.1016/j.compstruct.2005.03.006
  5. C. Gauthier, L. Chazeau, T. Prasse, and J. Y. Cavaille, Reinforcement effects of vapour grown carbon nanofibers as fillers in rubbery matrices, Composites Science & Technology, 65, 335 (2005) https://doi.org/10.1016/j.compscitech.2004.08.003
  6. Y. K. Choi, K. Sugimoto, S. M. Song, Y. Gotoh, Y. Ohkoshi, and M. Endo, Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers, Carbon, 43, 2199 (2005) https://doi.org/10.1016/j.carbon.2005.03.036
  7. Y. Zhou., F. Pervin, V. K. Rangari, and S. Jeelani, Fabrication and evaluation of carbon nano fiber filled carbon/epoxy composite, Materials Science & Engineering, 426, 221 (2006) https://doi.org/10.1016/j.msea.2006.04.031
  8. S. A. Gordeycv, F. J. Macedo, J. A. Ferreira, F. W. J. van Hattum, and C. A. Bernardo, Transport: properties of polymer-vapour grown carbon fibre composites, Physica B, 279, 33 (2000) https://doi.org/10.1016/S0921-4526(99)00660-2
  9. S. Tsantzalis, P. Karapappas, A. Vavouliotis, P. Tsotra, A. Paipetis, V. Kostopoulos, and K. Friedrich, Enhancement of the mechanical performance of an epoxy resin and fiber reinforced epoxy resin composites by the introduction of CNF and PZT particles at the microscale, Applied Science and Manufacturing, 38, 1076 (2007) https://doi.org/10.1016/j.compositesa.2006.04.015
  10. J. M. Park, D. S. Kim, S. J. Kim, P. G. Kim, D. J. Yoon, and K. L. Devries, Inherent sensing and interfacial evaluation of carbon nanofiber and nanotube/epoxy composites using electrical resistance measurement and micrornechanical technique, Composites, 38, 30 (2007)
  11. H. Miyagawa and L. T. Drzal, Effect of oxygen plasma treatment on mechanical properties of vapor grown carbon fiber nanocornposites, Composites, 36, 1440 (2005) https://doi.org/10.1016/j.compositesa.2005.01.027
  12. F. W. J. V. IIattum and C. A. Bernardo, A study of the thermomechanical properties of carbon fiber-polypropylene composites, Polymer Composites, 20, 683 (1999) https://doi.org/10.1002/pc.10391
  13. Y. K. Choi, Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers, Carbon, 43, 2199 (2006) https://doi.org/10.1016/j.carbon.2005.03.036
  14. H. Miyagawa, M. J. Rich, and L. T. Drzal, Therrnophysical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers, Thermochimica Acta, 412, 67 (2006)
  15. Y. S. Song and J. R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocornposites, Carbon, 13, 1378 (2005)
  16. S. Trigwell, A C. Schuergcr, C. R. Buhler, and C. I. Calle, Use of atmospheric glow discharge plasma to modify spaceport materials, Lunar & Planetary Science, XXXVII, 2257 (2006)
  17. R. Suchentrunk, H. J. Fuesser, G. StaudigJ, D. Jonke, and M. Meyer, Plasma surface engineering innovative processes and coating systems for high-quality products, Surface & Coatings echnology, 112, 351 (1999) https://doi.org/10.1016/S0257-8972(98)00833-0
  18. W. Brandl and G. Marginean, Functionalisation of the carbon nanofibres by plasma treatment, Thin Solid Films, 477, 181 (2004)
  19. H. Bubert, X. Ai, S. Haiber, M. Heintze, V. Bruser, E. Pasch, W. Brandl, and G. Marginean, Basic analytical investigation of plasma chemically modified carbon fibers, Surface & Coatings Technology, 57, 1601 (2002)
  20. V. Chirila, T G. Marginean, and W. Brand, Effect of the oxygen plasma treatment parameters on the carbon nanotubes surface properties, Surface & Coatings Technology, 200, 548 (2005) https://doi.org/10.1016/j.surfcoat.2005.01.089
  21. J. I. Paredes, A Martinez-Alonso, and J. M. D. Tascon, Oxygen plasma modification of submicron vapor grown carbon fibers as studied by scanning tunneling microscopy, Surface & Coatings Technology, 40, 1101 (2002)
  22. V. Bruser, M. Heintze, W. Brandl, G. Marginean, and H. Bubert, Surface modification of carbon nanofibres in low temperature plasmas, Diamond and Related Materials, 13, 1177 (2004) https://doi.org/10.1016/j.diamond.2003.10.061
  23. M. Heintze, V. Bruser, W. Brandl, G. Marginean, H. Bubert, and S. Haiber, Surface modification of carbon nanofibres in low temperature plasmas, Surface & Coatings Technology, 174, 831 (2003) https://doi.org/10.1016/S0257-8972(03)00410-9
  24. Showa Denko, Tokyo, Japan, 'Typical properties of VGCF'. www.sdkc.com
  25. Kukdo Chemical, Seoul, Korea, 'Catalog epoxy resin and hardener', www.kukdo.com