Browse > Article
http://dx.doi.org/10.12925/jkocs.2007.24.3.7

Mechanical Properties of Vapor Grown Carbon Fiber/Epoxy Nanocomposites With Different Dispersion Methods  

Khuyen, Nguyen Quang (Department of Chemical Engineering, Changwon National University)
Kim, Byung-Sun (Composite Materials Group, Korea Institute of Machinery and Materials)
Kim, Jin-Bong (Composite Materials Group, Korea Institute of Machinery and Materials)
Lee, Soo (Department of Chemical Engineering, Changwon National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.24, no.3, 2007 , pp. 264-271 More about this Journal
Abstract
Effect of dispersion methods for Vapor Grown Carbon Fibers (VGCF) in epoxy caused the change in mechanical properties of VGCF/epoxy nanocomposites, such as tensile modulus and tensile strength. The influence of VGCF types - atmospheric plasma treated (APT) VGCF and raw VGCF - and their contents was discussed in detail. Treating VGCF with atmospheric plasma enhanced the surface energy, therefore improved the bonding strength with epoxy matrix. Two different methods used to disperse VGCF were ultrasonic and mechanical homogenizer methods. When using dispersion solutions, the VGCF demonstrated good dispersion in ethanol in both homogenizer and ultrasonic method. The uniform dispersion of VGCF was investigated by scanning electron microscopy (SEM) which showed well-dispersion of VGCF in epoxy matrix. The tensile modulus of raw VGCF/epoxy nanocomposites obtained by ultrasonic method was higher than that of one obtained by homogenizer method. APT VGCF/epoxy nanocomposites showed higher tensile strength than that of raw VGCF/epoxy nanocomposites.
Keywords
VGCF; Nanocomposites; Atmospheric Plasma Treatment; Ultrasonic; Homogenizer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Lozano and V. Diaz, Alignment and Mechanical Characterization of Vapor Grown Carbon Nanofibers in Polyethylene, J. Rhecfuture, 38, 902 (2002)
2 J. Zeng, B. Saltysiak, W. S. Johnson, D. A. Schiral, and S. Kumar, Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites, Composites, 35, 173 (2004)   DOI   ScienceOn
3 Y. K. Choi, K. Sugimoto, S. M. Song, Y. Gotoh, Y. Ohkoshi, and M. Endo, Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers, Carbon, 43, 2199 (2005)   DOI   ScienceOn
4 H. Bubert, X. Ai, S. Haiber, M. Heintze, V. Bruser, E. Pasch, W. Brandl, and G. Marginean, Basic analytical investigation of plasma chemically modified carbon fibers, Surface & Coatings Technology, 57, 1601 (2002)
5 Showa Denko, Tokyo, Japan, 'Typical properties of VGCF'. www.sdkc.com
6 R. Suchentrunk, H. J. Fuesser, G. StaudigJ, D. Jonke, and M. Meyer, Plasma surface engineering innovative processes and coating systems for high-quality products, Surface & Coatings echnology, 112, 351 (1999)   DOI   ScienceOn
7 S. Trigwell, A C. Schuergcr, C. R. Buhler, and C. I. Calle, Use of atmospheric glow discharge plasma to modify spaceport materials, Lunar & Planetary Science, XXXVII, 2257 (2006)
8 Kukdo Chemical, Seoul, Korea, 'Catalog epoxy resin and hardener', www.kukdo.com
9 J. M. Park, D. S. Kim, S. J. Kim, P. G. Kim, D. J. Yoon, and K. L. Devries, Inherent sensing and interfacial evaluation of carbon nanofiber and nanotube/epoxy composites using electrical resistance measurement and micrornechanical technique, Composites, 38, 30 (2007)
10 V. Chirila, T G. Marginean, and W. Brand, Effect of the oxygen plasma treatment parameters on the carbon nanotubes surface properties, Surface & Coatings Technology, 200, 548 (2005)   DOI   ScienceOn
11 W. Brandl and G. Marginean, Functionalisation of the carbon nanofibres by plasma treatment, Thin Solid Films, 477, 181 (2004)
12 H. Miyagawa and L. T. Drzal, Effect of oxygen plasma treatment on mechanical properties of vapor grown carbon fiber nanocornposites, Composites, 36, 1440 (2005)   DOI   ScienceOn
13 Y. K. Choi, Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers, Carbon, 43, 2199 (2006)   DOI   ScienceOn
14 H. Miyagawa, M. J. Rich, and L. T. Drzal, Therrnophysical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers, Thermochimica Acta, 412, 67 (2006)
15 S. A. Gordeycv, F. J. Macedo, J. A. Ferreira, F. W. J. van Hattum, and C. A. Bernardo, Transport: properties of polymer-vapour grown carbon fibre composites, Physica B, 279, 33 (2000)   DOI
16 J. C. Lin, L. C. Chang, M. H. Nien, and H. L. Ho, Mechanical behavior of various nanoparticle filled composites at low-velocity impact, Composite Structures, 74, 30 (2006)   DOI   ScienceOn
17 A. Chatterjee and B.L. Deopura, High modulus and high strength PP nanocomposite filament, Composites, Part A 37, 813 (2005)
18 V. Bruser, M. Heintze, W. Brandl, G. Marginean, and H. Bubert, Surface modification of carbon nanofibres in low temperature plasmas, Diamond and Related Materials, 13, 1177 (2004)   DOI   ScienceOn
19 M. Heintze, V. Bruser, W. Brandl, G. Marginean, H. Bubert, and S. Haiber, Surface modification of carbon nanofibres in low temperature plasmas, Surface & Coatings Technology, 174, 831 (2003)   DOI   ScienceOn
20 S. Tsantzalis, P. Karapappas, A. Vavouliotis, P. Tsotra, A. Paipetis, V. Kostopoulos, and K. Friedrich, Enhancement of the mechanical performance of an epoxy resin and fiber reinforced epoxy resin composites by the introduction of CNF and PZT particles at the microscale, Applied Science and Manufacturing, 38, 1076 (2007)   DOI   ScienceOn
21 C. Gauthier, L. Chazeau, T. Prasse, and J. Y. Cavaille, Reinforcement effects of vapour grown carbon nanofibers as fillers in rubbery matrices, Composites Science & Technology, 65, 335 (2005)   DOI   ScienceOn
22 Y. S. Song and J. R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocornposites, Carbon, 13, 1378 (2005)
23 J. I. Paredes, A Martinez-Alonso, and J. M. D. Tascon, Oxygen plasma modification of submicron vapor grown carbon fibers as studied by scanning tunneling microscopy, Surface & Coatings Technology, 40, 1101 (2002)
24 Y. Zhou., F. Pervin, V. K. Rangari, and S. Jeelani, Fabrication and evaluation of carbon nano fiber filled carbon/epoxy composite, Materials Science & Engineering, 426, 221 (2006)   DOI
25 F. W. J. V. IIattum and C. A. Bernardo, A study of the thermomechanical properties of carbon fiber-polypropylene composites, Polymer Composites, 20, 683 (1999)   DOI