Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.1.12

Interface Treatment Effect of High Performance Flexible Organic Thin Film Transistor (OTFT) Using PVP Gate Dielectric in Low Temperature  

Yun, Ho-Jin (Department of Electronics Engineering, Chungnam National University)
Baek, Kyu-Ha (Electronics and Telecommunications Research Institute (ETRI))
Shin, Hong-Sik (Department of Electronics Engineering, Chungnam National University)
Lee, Ga-Won (Department of Electronics Engineering, Chungnam National University)
Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University)
Do, Lee-Mi (Electronics and Telecommunications Research Institute (ETRI))
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.1, 2011 , pp. 12-16 More about this Journal
Abstract
In this study, we fabricated the flexible pentacene TFTs with the polymer gate dielectric and contact printing method by using the silver nano particle ink as a source/drain material on plastic substrate. In this experiment, to lower the cross-linking temperature of the PVP gate dielectric, UV-Ozone treatment has been used and the process temperature is lowered to $90^{\circ}C$ and the surface is optimized by various treatment to improve device characteristics. We tried various surface treatments; $O_2$ Plasma, hexamethyl-disilazane (HMDS) and octadecyltrichlorosilane (OTS) treatment methods of gate dielectric/semiconductor interface, which reduces trap states such as -OH group and grain boundary in order to improve the OTFTs properties. The optimized OTFT shows the device performance with field effect mobility, on/off current ratio, and the sub-threshold slope were extracted as $0.63cm^2 V^{-1}s^{-1}$, $1.7{\times}10^{-6}$, and of 0.75 V/decade, respectively.
Keywords
OTFT; PVP; Flexible; Surface treatment; Organic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. El Houti El Jazairi, T. Trigaud, and J.-P. Moliton, Micro and Nanosystems, 1, 46 (2009).   DOI
2 J. Jo, T.-M. Lee, J.-S. Yu, C.-H. Kim, D.-S. Kim, E.-S. Lee and Masayoshi Esashi, Sensors and Mater., 19, 487 (2007).
3 M. Leufgen, A. Lebib, T. Muck, U. Bass, V. Wagner, T. Borzenko, G. Schmidt, J. Geurts, and L. W. Molenkamp, Appl. Phys. Lett., 84, 1582 (2004).   DOI
4 I. Pang, H. Kim, S. Kim, K. Jeong, H. S. Jung, C.-J. Yu, H. Soh, and J. Lee, Organic Electronics, 11, 338 (2010).   DOI
5 L. F. Deng, P. T. Lai, J. P. Xu, H. W. Choi, and C. M. Che, Electrochem. Soc., 1002, 1942 (2010).
6 S. M. Pyo, M. Y. Lee, J. H. Jeon, K. Y. Choi, M. H. Yi, and J. S. Kim, Adv. Funct. Mater., 15, 619 (2005).   DOI
7 Flora M. Li, Arokia Nathan, Yiliang Wu and Beng S. Ong. Appl. Phys. Lett., 90, 133514 (2007).   DOI
8 H.-S. Shin, K.-H. Baek, S.-S. Park, K.-C. Song, G.-W. Lee, H.-D. Lee, J.-S. Wang, K. Lee, and L.-M. Do, J. Nanoscience and Nanotechnology, 10, 3185 (2010).   DOI
9 Shuhei Tatemichi, Musubu Ichikawa, Shimpei Kato, Toshiki Koyama, and Yoshio Taniguchi, Phys. Stat. Sol., 2, 47 (2008).
10 S. H. Han, J. H. Kim, Y. R. Son and J. Jang J. Korean Phys. Soc., 48, 107 (2006).
11 Huiping Jia, Erich K. Gross, Robert M. Wallace, Bruce E. Gnade, Organic Electronics, 8, 44 (2007).   DOI
12 S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nature Mater., 3, 317 (2004).   DOI
13 C. S. Kim, S. J. Jo, J. B. Kim, S. Y. Ryu, J. H. Noh, H. K. Baik, S. J. Lee, and Y. S. Kim, Appl. Phys. Lett., 91 063503 (2007).   DOI
14 Bert Nickel, Matthias Fiebig, Stefan Schiefer, Martin Gollner, Martin Huth, Christoph Erlen, and Paolo Lugli, Phys. Stat. Sol., 205, 526 (2008).   DOI
15 S.-Y. Kwak, C. G. Choi, and B.-S. Bae, Electrochem, and Solid State Lett., 12, G37 (2009).   DOI