• 제목/요약/키워드: PL properties

검색결과 748건 처리시간 0.028초

XRD 분석에 의한 결정구조와 PL 분석에 의한 광학적 특성의 상관성 (Relationship between Optical Properties Analyzed by Photoluminance of Bonding Structure Analyzed by X-ray Diffractometer)

  • 오데레사
    • 반도체디스플레이기술학회지
    • /
    • 제15권1호
    • /
    • pp.70-75
    • /
    • 2016
  • GZO films prepared on ITO glasses were annealed at various temperatures in a vacuum condition to research the relationship between oxygen vacancies and optical properties. GZO films after annealing in a vacuum showed the various optical-chemical properties depending on the annealing temperatures and oxygen gas flow rate during the deposition. The oxygen vacancy of GZO film prepared by oxygen gas flows of 22 sccm increased with increasing the annealing temperatures, because of the extraction of oxygen by the annealing. But the intensity of photoluminance of GZO with 22 sccm decreased in accordance with the annealing temperature, because of the reduction of ionized charge carriers. The oxygen vacancy by the extraction of oxygen enhanced a depletion, so the widen depletion had the strong Schottky barrier and the PL intensity due to the low carrier density decreased.

펄스 레이저 증착법으로 제작한 ZnO 박막의 발광 특성 (Light emission properties of ZnO thin films grown by pulsed laser deposition)

  • 배상혁;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.539-542
    • /
    • 2000
  • ZnO thin films for light emission device have been deposited on sapphire and silicon substrates by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of 355 nm. In order to investigate the emission properties of ZnO thin films, PL measurements with an Ar ion laser as a light source using an excitation wavelength of 351 nm and a power of 100 mW are used. All spectra were taken at room temperature by using a grating spectrometer and a photomultiplier detector. ZnO exhibited PL bands centered around 390, 510 and 640 nm, labeled near ultra-violet (UV), green and orange bands. Structural properties of ZnO thin films are analized with X-ray diffraction (XRD).

  • PDF

ZnO/MgO 막의 열처리에 따른 물성 변화 (Influence of annealing on the properties of ZnO/MgO films)

  • 최무희;마대영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.151-152
    • /
    • 2005
  • ZnO films were deposited on MgO substrates (ZnO/MgO) by ultrasonic spray pyrolysis. Substrate temperature varied from $250^{\circ}C$ to $350^{\circ}C$. The crystallographic properties and surface morphologies of the ZnO/MgO films were studied by X ray diffraction and scanning electron microscopy. The properties of photoluminescence (PL) for the films were investigated by dependence of PL spectra on the substrate temperature and the annealing temperature. The ZnO/MgO films prepared at $350^{\circ}C$ showed the strongest UV emission peak at 18 K and 300 K among the films in this study.

  • PDF

n-type과 p-type 다공성 실리콘의 구조와 광학적 특성에 관한 연구 (The structure and optical properties of n-type and p-type porous silicon)

  • 박현아;오재희;박동화;안화승;태원필;이종무
    • 한국진공학회지
    • /
    • 제12권4호
    • /
    • pp.257-262
    • /
    • 2003
  • n-type과 p-type 다공성 실리콘 (PS)의 구조에 따른 광학적 및 전기적 특성을 조사하였다. 먼저 화학적 에칭에 의하여 다공성 실리콘 시편을 준비했다. 이 시편의 미세구조의 특징을 주로 SEM, AFM, XRD 분석에 의하여 관찰하였으며 그들의 광학적 화학적 특성을 PL과 FTIR을 통해 측정하였다. n-type다공성 실리콘의 상온 PL파장은 p-type 다공성 실리콘이 남색 영역 (400-650 nm)임에 반해 500-650 nm로 이동함을 알 수 있었다. 또한 PS층 위에 ∼40 nm 두께의 반투명한 Cu박막을 rf 스퍼터링법으로 증착하여 PS내의 pore를 Cu로 충전한 시편의 I-V 특성과 EL 특성을 관찰했다.

GaAs 기판 위에 성장한 In0.5Ga0.5As/In0.5Al0.5As 다중양자우물의 광학적 특성에 대한 In0.5Al0.5As 버퍼층 성장온도의 영향 (Growth Temperature Effects of In0.5Al0.5As Buffer Layer on the Optical Properties of In0.5Ga0.5As/In0.5Al0.5As Multiple Quantum Wells Grown on GaAs)

  • 김희연;오현지;안상우;류미이;임주영;신상훈;김수연;송진동
    • 한국진공학회지
    • /
    • 제19권3호
    • /
    • pp.211-216
    • /
    • 2010
  • $In_{0.5}Al_{0.5}As$ 버퍼층(buffer layer)의 성장온도 변화에 따른 $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ 다중양자우물(multiple quantum wells: MQWs)의 광학적 특성을 photoluminescence (PL)와 time-resolved PL (TRPL) 측정을 이용하여 분석하였다. $In_{0.5}Al_{0.5}As$ 버퍼층은 $320^{\circ}C$에서 $580^{\circ}C$까지 다양한 온도조건에서 $1{\mu}m$ 성장하였으며, 그 위에 6 nm, 4 nm, 그리고 2.5 nm 두께의 $In_{0.5}Ga_{0.5}As$ 양자우물(quantum well)과 10 nm 두께의 $In_{0.5}Ga_{0.5}As$ 장벽(barrier)의 MQWs을 성장하였다. 낮은 온도($320-480^{\circ}C$)에서 성장한 InAlAs 버퍼층의 MQWs는 4 nm QW과 6 nm QW로부터 모두 PL 피크가 측정되었으나, 높은 온도($320-580^{\circ}C$)의 버퍼층 위에 성장한 MQWs는 6 nm QW에서의 PL 피크만 관찰되었다. 일정한 온도 $480^{\circ}C$에서 성장한 버퍼층의 MQWs의 PL 세기가 가장 강하게 측정되었으며, 가장 높은 온도에서($530-580^{\circ}C$)에서 성장한 버퍼층의 MQWs의 PL 세기가 가장 약하게 나타났다. 이러한 PL 결과로부터 $In_{0.5}Al_{0.5}As$ 버퍼층의 최적의 성장조건은 일정한 온도 $480^{\circ}C$임을 확인하였다. 방출파장에 따른 PL 소멸시간(decay time)과 PL 스펙트럼으로부터 4 nm QW과 6 nm QW에서의 운반자 수명시간을 얻었다.

Properties of Defective Regions Observed by Photoluminescence Imaging for GaN-Based Light-Emitting Diode Epi-Wafers

  • Kim, Jongseok;Kim, HyungTae;Kim, Seungtaek;Jeong, Hoon;Cho, In-Sung;Noh, Min Soo;Jung, Hyundon;Jin, Kyung Chan
    • Journal of the Optical Society of Korea
    • /
    • 제19권6호
    • /
    • pp.687-694
    • /
    • 2015
  • A photoluminescence (PL) imaging method using a vision camera was employed to inspect InGaN/GaN quantum-well light-emitting diode (LED) epi-wafers. The PL image revealed dark spot defective regions (DSDRs) as well as a spatial map of integrated PL intensity of the epi-wafer. The Shockley-Read-Hall (SRH) nonradiative recombination coefficient increased with the size of the DSDRs. The high nonradiative recombination rates of the DSDRs resulted in degradation of the optical properties of the LED chips fabricated at the defective regions. Abnormal current-voltage characteristics with large forward leakages were also observed for LED chips with DSDRs, which could be due to parallel resistances bypassing the junction and/or tunneling through defects in the active region. It was found that the SRH nonradiative recombination process was dominant in the voltage range where the forward leakage by tunneling was observed. The results indicated that the DSDRs observed by PL imaging of LED epi-wafers were high density SRH nonradiative recombination centers which could affect the optical and electrical properties of the LED chips, and PL imaging can be an inspection method for evaluation of the epi-wafers and estimation of properties of the LED chips before fabrication.

Effect of Growth Temperature on the Luminescence Properties of InP/GaP Short-Period Superlattice Structures

  • Byun, Hye Ryoung;Ryu, Mee-Yi;Song, Jin Dong;Lee, Chang Lyul
    • Applied Science and Convergence Technology
    • /
    • 제24권1호
    • /
    • pp.22-26
    • /
    • 2015
  • The optical properties of InP/GaP short-period superlattice (SPS) structures grown at various temperatures from $400^{\circ}C$ to $490^{\circ}C$ have been investigated by using temperature-dependent photoluminescence (PL) and emission wavelength-dependent time-resolved PL measurements. The PL peak energy for SPS samples decreases as the growth temperature increases. The decreased PL energy of ~10 meV for the sample grown at $425^{\circ}C$ compared to that for $400^{\circ}C$-grown sample is due to the CuPt-B type ordering, while the SPS samples grown at $460^{\circ}C$ and $490^{\circ}C$ exhibit the significant reduction of the PL peak energies due to the combined effects of the formation of lateral composition modulation (LCM) and CuPt-B type ordering. The SPS samples with LCM structure show the enhanced carrier lifetime due to the spatial separation of carriers. This study represents that the bandgap energy of InP/GaP SPS structures can be controlled by varying growth temperature, leading to LCM formation and CuPt-B type ordering.

Study on UV Opto-Electric Properties of ZnS:Mn/ZnS Core-Shell QD

  • Lee, Yun-Ji;Cha, Ji-Min;Yoon, Chang-Bun;Lee, Seong-Eui
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.55-60
    • /
    • 2018
  • In this study, quantum dots composed of $Mn^{2+}$ doped ZnS core and ZnS shell were synthesized using MPA precursor at room temperature. The ZnS: Mn/ZnS quantum dots were prepared by varying the content of MPA in the synthesis of ZnS shells. XRD, Photo-Luminescence (PL), XPS and TEM were used to characterize the properties of the ZnS: Mn/ZnS quantum dots. As a result of PL measurement using UV excitation light at 365 nm, the PL intensity was found to greatly increase when MPA was added at 15 ml, compared to the case with no MPA; the PL peaks shifted from 603 nm to 598 nm. A UV sensor was fabricated by using a sputtering process to form a Pt pattern and placing a QD on the Pt pattern. To verify the characteristics of the sensor, we measured the electrical properties via irradiation with UV, Red, Green, and Blue light. As a result, there were no reactions for the R, G, and B light, but an energy of 3.39 eV was produced with UV light irradiation. For the sensor using ZnS: Mn/ZnS quantum dots, the maximum current (A) value decreased from $4.00{\times}10^{-11}$ A to $2.62{\times}10^{-12}$ A with increasing of the MPA content. As the MPA content increases, the PL intensity improves but the electrical current value dropped because of the electron confinement effect of the core-shell.

Highly Stable Photoluminescent Qunatum Dot Multilayers by Layer-by-Layer Assembly via Nucleophilic Substitution Reaction in Organic Media

  • 윤미선;김영훈;정상혁;백현희;조진한
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.244.2-244.2
    • /
    • 2011
  • We introduce a novel and robust method for the preparation of nanocomposite multilayers, which allows the excellent photoluminescent (PL) properties as well as the accurate control over the composition and dimensions of multilayers. By exchanging the oleic acid stabilizers of CdSe@ZnS quantum dots (QDs) synthesized in organic solvent with 2-bromo-2-methylpropionic acid (BMPA) in the same solvent, these nanoparticles were be alternately deposited by nucleophilic substitution reaction with highly branched poly(amidoamine) dendrimer (PAMA) through layer-by-layer (LbL) assembly process. Our approach does not need to be transformed into the water-dispersible nanoparticles with electrostatic or hydrogen-bonding groups, which can deteriorate their inherent properties, for the built-up of multilayers. The nanocomposite multilayers including QDs exhibited the strong PL properties achieving densely packed surface coverage as well as long-term PL stability under atmospheric conditions in comparison with those of conventional LbL multilayers based on electrostatic interaction. Furthermore, we demonstrate that the flexible multilayer films with optical properties can be easily prepared using nucleophilic substitution reaction between bromo and amino groups in organic media. This robust and tailored method opens a new route for the design of functional film devices based on nanocomposite multilayers.

  • PDF

ZnO 박막의 두께변화에 따른 광학적 특성변화 연구 (Luminescence properties of ZnO thin films depending on the variation of the film thickness)

  • 심은섭;강홍성;강정석;김종훈;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.135-138
    • /
    • 2001
  • We report the structural ,optical and electrical properties of ZnO thin films depending on the variation of the film thickness. The properties of the films deposited on sapphire (001) substrates using a pulsed laser deposition technique (PLD) were characterized with XRD, hall measurement and photoluminescence (PL). In our study, the increase of the thickness of ZnO thin films shows the improvement of the structural and optical properties. The electric properties of the films were also well matched with the structural and optical properties

  • PDF