Browse > Article
http://dx.doi.org/10.5757/ASCT.2015.24.1.22

Effect of Growth Temperature on the Luminescence Properties of InP/GaP Short-Period Superlattice Structures  

Byun, Hye Ryoung (Department of Physics, Kangwon National University)
Ryu, Mee-Yi (Department of Physics, Kangwon National University)
Song, Jin Dong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
Lee, Chang Lyul (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology)
Publication Information
Applied Science and Convergence Technology / v.24, no.1, 2015 , pp. 22-26 More about this Journal
Abstract
The optical properties of InP/GaP short-period superlattice (SPS) structures grown at various temperatures from $400^{\circ}C$ to $490^{\circ}C$ have been investigated by using temperature-dependent photoluminescence (PL) and emission wavelength-dependent time-resolved PL measurements. The PL peak energy for SPS samples decreases as the growth temperature increases. The decreased PL energy of ~10 meV for the sample grown at $425^{\circ}C$ compared to that for $400^{\circ}C$-grown sample is due to the CuPt-B type ordering, while the SPS samples grown at $460^{\circ}C$ and $490^{\circ}C$ exhibit the significant reduction of the PL peak energies due to the combined effects of the formation of lateral composition modulation (LCM) and CuPt-B type ordering. The SPS samples with LCM structure show the enhanced carrier lifetime due to the spatial separation of carriers. This study represents that the bandgap energy of InP/GaP SPS structures can be controlled by varying growth temperature, leading to LCM formation and CuPt-B type ordering.
Keywords
Short-period superlattice; Lateral composition modulation; photoluminescence; Time-resolved photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. V. Asryan, ECS Trans. 25, 9 (2009).
2 V. A. Odnoblyudov and C. W. Tu, Appl. Phys. Lett. 89, 11922 (2006).
3 M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, Phys. Rev. B 69, 235332 (2004).   DOI   ScienceOn
4 N. Lebedeva, A. Varpula, S. Novikov, and P. Kuivalainen, Phys. Rev. B 81, 235307 (2010).   DOI   ScienceOn
5 D. Zhou, P. E. Vullum, G. Sharma, S. F. Thomassen, R. Holmestad, T. W. Reenaas, and B. O. Fimland, Appl. Phys. Lett. 96, 083108 (2010).   DOI   ScienceOn
6 J. Kim, S. Ha, C. Yang, J. Lee, S. Park, W. J. Choi, and E. Yoon, J. Korean Vacuum Soc. 19, 217 (2010).   DOI   ScienceOn
7 H. J. Lee, M.-Y. Ryu, and J. S. Kim, J. Korean Vacuum Soc. 18, 474 (2009).   DOI   ScienceOn
8 D. Sreenivasan, J. E. M. Haverkort, T. J. Eijkemans, and R. Notzel, Appl. Phys. Lett. 90, 112109 (2007).   DOI   ScienceOn
9 K.-H. Kim, J. H. Sim, and I. -H. Bae, J. Korean Vacuum Soc. 18, 208 (2009).   DOI   ScienceOn
10 S. P. Ahrenkiel, A. G. Norman, A. l-. M. M. Jassim, A. Mascarenhas, J. Mirecki Millunchick, R. D. Twesten, S. R. Lee, D. M. Follstaedt, and E. D. Jones, J Appl. Phys. 84, 6088 (1998).   DOI
11 G. B. String fellow and G. S. Chen, J. Vac. Sci. Technol. B 9, 2182 (1991).   DOI
12 S. W. Jun, T.-Y. Seong, J. H. Lee, and B. Lee, Appl. Phys. Lett. 68, 3447 (1996).
13 T.-Y. Seong, A. G. Norman, I. T. Ferguson, J. L. Hutchison, G. R. Booker, R. A. Stradling, and B. A. Joyce, Inst. Phys. Conf. Ser. 117, 485 (1991).
14 T.-Y. Seong, A. G. Norman, I. T. Ferguson, and G. R. Booker, J. Appl. Phys. 73, 8227 (1993).   DOI   ScienceOn
15 S. Francoeur, M. C. Hanna, A. G. Norman, and A. Mascarenhas, Appl. Phys. Lett. 80, 243 (2002).   DOI   ScienceOn
16 K. Y. Cheng, K. C. Hsieh, and J. N. Baillargeon, Appl. Phys. Lett. 60, 2892 (1992).   DOI
17 C. M. Fetzer, R. T. Lee, S. W. Jun, G. B. Stringfellow, S. M. Lee, and T. Y Seong, Appl. Phys. Lett. 78, 1376 (2001).   DOI   ScienceOn
18 J. D. Song, Y. W. Ok, J. M. Kim, Y. T. Lee, and T. Y. Seong, J. Appl. Phys. 90, 5086 (2001).   DOI   ScienceOn
19 P. Ernst, C. Geng, G. Hahn, F. Scholz, H. Schweizer, F. Phillipp, and A. Mascarenhas, J. Appl. Phys. 75, 2633 (1996).
20 H. M. Cheong, A. Mascarenhas, S. P. Ahrenkiel, K. M. Jones, J. F. Geisz, and J. M. Olson, J. Appl. Phys. 83, 5418 (1998).   DOI   ScienceOn
21 S. H. Wei and A. Zunger, Phys. Rev. B 57, 8983 (1998).   DOI
22 J. D. Song, Y. W. Ok, J. M. Kim, Y. T. Lee, and T. Y. Seong, Appl. Surf. Science 183, 33 (2001).   DOI   ScienceOn
23 P. Ernst, C. Geng, F. Scholz, H. Schweizer, Y. Zhang, and A. Mascarenhas, Appl. Phys. Lett. 67, 2347 (1995).   DOI   ScienceOn
24 S.-H. Wei, D. B. Laks, and A. Zunger, Appl. Phys. Lett. 62, 1937 (1993).   DOI   ScienceOn
25 K. W. Park, C. Y. Park, S. Ravindran, S. J. Kang, H. Y. Hwang, Y. D. Jho, Y. R. Jo, B. J. Kim, and Y. T. Lee, J. Appl. Phys. 116, 043516 (2014).   DOI   ScienceOn