• 제목/요약/키워드: PID algorithm

검색결과 684건 처리시간 0.03초

적응 PID를 이용한 질량 유량 제어기 구현 (Implementation of the Mass Flow Controller using Adaptive PID)

  • 백광렬;조봉수
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.19-25
    • /
    • 2007
  • The MFC(Mass Flow Controller) is an equipment that measures and controls mass flow rates of fluid. Most of the HFC system is still using the PID algorithm. The PID algorithm shows superior performance on the MFC system. But the PID algorithm in the MFC system has a few problems as followed. The characteristic of the MFC system is changed according to the operating environment. And, when the piezo valve that uses the control valve is assembled in the MFC system, a coupling error is generated. Therefore, it is very difficult to find out the exact parameters of MFC system. In this paper, we propose adaptive PID algorithm in order to compensate these problems of a traditional PID algorithm. The adaptive PID algorithm estimates the parameters of MFC system using LMS(Least Mean Square) algorithm and calculates the coefficients of PID controller. Besides, adaptive PID algorithm shows better transient response because adaptive PID algorithm includes a feedforward. And we implement MFC system using proposed adaptive PID algorithm with self-tuning and Ziegler and Nickels's method. Finally, comparative analysis of the proposed adaptive PID and the traditional PID is shown.

Analysis and Design of a Separate Sampling Adaptive PID Algorithm for Digital DC-DC Converters

  • Chang, Changyuan;Zhao, Xin;Xu, Chunxue;Li, Yuanye;Wu, Cheng'en
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2212-2220
    • /
    • 2016
  • Based on the conventional PID algorithm and the adaptive PID (AD-PID) algorithm, a separate sampling adaptive PID (SSA-PID) algorithm is proposed to improve the transient response of digitally controlled DC-DC converters. The SSA-PID algorithm, which can be divided into an oversampled adaptive P (AD-P) control and an adaptive ID (AD-ID) control, adopts a higher sampling frequency for AD-P control and a conventional sampling frequency for AD-ID control. In addition, it can also adaptively adjust the PID parameters (i.e. $K_p$, $K_i$ and $K_d$) based on the system state. Simulation results show that the proposed algorithm has better line transient and load transient responses than the conventional PID and AD-PID algorithms. Compared with the conventional PID and AD-PID algorithms, the experimental results based on a FPGA indicate that the recovery time of the SSA-PID algorithm is reduced by 80% and 67% separately, and that overshoot is decreased by 33% and 12% for a 700mA load step. Moreover, the SSA-PID algorithm can achieve zero overshoot during startup.

퍼지게인 스케쥴링 PID 제어이론을 이용한 동적 위치 유지 제어기법에 관한 연구 (A Study on the Dynamic Positioning Control Algorithm Using Fuzzy Gain Scheduling PID Control Theory)

  • 전마로;김희수;김재학;김수정;송순석;김상현
    • 대한조선학회논문집
    • /
    • 제54권2호
    • /
    • pp.102-112
    • /
    • 2017
  • Many studies on dynamic positioning control algorithms using fixed feedback gains have been carried out to improve station keeping performance of dynamically positioned vessels. However, the control algorithms have disadvantages in that it can not cope with changes in environmental disturbances and response characteristics of vessels motion in real time. In this paper, the Fuzzy Gain Scheduling - PID(FGS - PID) control algorithm that can tune PID gains in real time was proposed. The FGS - PID controller that consists of fuzzy system and a PID controller uses weighted values of PID gains from fuzzy system and fixed PID gains from Ziegler - Nichols method to tune final PID gains in real time. Firstly, FGS - PID controller, control allocation algorithm, FPSO and environmental disturbances were modeled using Matlab/Simulink to evaluate station keeping performance of the proposed control algorithm. In addition, simulations that keep positions and a heading angle of vessel with wind, wave, current disturbances were carried out. From simulation results, the FGS - PID controller was confirmed to have better performances of keeping positions and a heading angle and consuming power than those of the PID controller. As a consequence, the proposed FGS - PID controller in this paper was validated to have more effectiveness to keep position and heading angle than that of PID controller.

PID 제어기의 On-Line 퍼지 자동동조 (On-Line Fuzzy Auto Tuning for PID Controller)

  • 황형수;최정내;이원혁
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권2호
    • /
    • pp.55-61
    • /
    • 2000
  • In this paper, we proposed a new PID tuning algorithm by the fuzzy set theory to improve the performance of the PID controller. The new tuning algorithm for the PID controller has the initial value of parameter Kc, $\tau$I, $\tau$D by the Ziegler-Nichols formula using the ultimate gain and ultimate period from a relay tuning experiment. We get error and error change of plant output correspond to the initial value and new proportion gain(Kc) and integral time($\tau$I) from fuzzy tunner. This fuzzy tuning algorithm for PID controller considerably reduced overshoot and rise time compare to any other PID controller tuning algorithms. In real parametric uncertainty systems, the PID controller with Fuzzy auto-tuning give appreciable improvement in the performance. The significant properties of this algorithm is shown by simulation In this paper, we proposed a new PID algorithm by the fuzzy set theory to improve the performance of the PID controller.

  • PDF

퍼지 로직 동조기를 이용한 PID 제어기의 이득 조정 (Tuning gains of a PID controller using fuzzy logic-based tuners)

  • 이명원;권순학;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.184-187
    • /
    • 1996
  • In this paper, an algorithm for tuning gains of a PID controller is proposed. The proposed algorithm is composed of two stages. The first is a stage for Lyapunov function-based initial stabilization of an overall system and rough tuning gains of the PID controller. The other is that for fine tuning gains of the PID controller. All tunings are performed by using the well-known fuzzy logic-based tuner. The computer simulations are performed to show the validity of the proposed algorithm and results are presented.

  • PDF

전자부품용 저항용접기의 퍼지-PID 이득조정 알고리즘 (Fuzzy-PID Gain Scheduling Algorithm of Resistive Welder for Electronic Parts)

  • Park, Myung-Kwan;Lee, Jong-Woon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.114-116
    • /
    • 2004
  • The temperature profile control issue in the resistive welder for the electronic parts is discussed. The average current of the welder tip depends on the phase(on-time) of the AC power and the tip temperature maintains or increases/decreases depending on the integral of the current square and heat loss, The basic PID control algorithm with thermo-couple feedback is difficult to track the temperature profile for various parts and optimal gain changes much. So constant gain PID algorithm is not enough to cover various electronic parts welding and a Fuzzy-PID automatic gain tuning algorithm is devised and added to conventional PID algorithm and this hybrid control architecture is implemented and the experimental results are shown.

  • PDF

Robust Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging Based Optimization

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1092-1097
    • /
    • 2005
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on $H_{\infty}$ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response

  • PDF

Intelligent Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.15-20
    • /
    • 2004
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on H$\_$$\infty$/ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response.

  • PDF

시뮬레이티드 어닐링과 조합한 PID 유전 제어기 설계 (A PID Genetic Controller Design Combined Simulated Annealing)

  • 홍영준;김낙교;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2655-2657
    • /
    • 2000
  • this paper suggests a genetic algorithms combining simulated annealing for PID factor tunning. This paper made Off-Line control parameter tuning of the DC servo motor for the speed, In this paper new method to design PID controller through proposed genetic algorithm. Two experiments compared both the PID controller using genetic algorithms and PID controller using proposed genetic algorithm for a DC-servo motor. The result of two experiments was safty higher PID controller using proposed genetic algorithm than PID controller using genetic algorithm.

  • PDF

강인 PID 제어기 설계 (A tuning method for robust PID controller)

  • 윤상준;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.585-588
    • /
    • 1996
  • The conventional output feedback robust control designs are very useful for systems under parameter perturbation and uncertain disturbance. However these designs are very complicated and not easily implemented for industrial applications. So, this paper proposes a robust PID controller design method via genetic searching algorithm.

  • PDF