Browse > Article
http://dx.doi.org/10.5302/J.ICROS.2007.13.1.019

Implementation of the Mass Flow Controller using Adaptive PID  

Baek, Kwang-Ryul (부산대학교 전자과)
Cho, Bong-Su (부산대학교 전자과)
Publication Information
Journal of Institute of Control, Robotics and Systems / v.13, no.1, 2007 , pp. 19-25 More about this Journal
Abstract
The MFC(Mass Flow Controller) is an equipment that measures and controls mass flow rates of fluid. Most of the HFC system is still using the PID algorithm. The PID algorithm shows superior performance on the MFC system. But the PID algorithm in the MFC system has a few problems as followed. The characteristic of the MFC system is changed according to the operating environment. And, when the piezo valve that uses the control valve is assembled in the MFC system, a coupling error is generated. Therefore, it is very difficult to find out the exact parameters of MFC system. In this paper, we propose adaptive PID algorithm in order to compensate these problems of a traditional PID algorithm. The adaptive PID algorithm estimates the parameters of MFC system using LMS(Least Mean Square) algorithm and calculates the coefficients of PID controller. Besides, adaptive PID algorithm shows better transient response because adaptive PID algorithm includes a feedforward. And we implement MFC system using proposed adaptive PID algorithm with self-tuning and Ziegler and Nickels's method. Finally, comparative analysis of the proposed adaptive PID and the traditional PID is shown.
Keywords
MFC; PID; LMS; adaptive PID;
Citations & Related Records
연도 인용수 순위
  • Reference
1 이석기, 이연정, 이승하, 'MFC의 퍼지 제어기 구현,' 퍼지 및 지능시스템학회 논문지, vol. 14, no. 5, pp. 648-654, 2004
2 R N. Bateson, Introduction to Control System Technology, Prentice Hall, Inc., pp. 118-140
3 C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, Prentice Hall, Inc., pp. 404-413, 1995
4 S. Haykin, Adaptive Filter Theory, Prentice Hall, Inc., pp. 610-635, 2002
5 M. Hamdan and Z. Gao, 'A novel PID controller for pneumatic proportional values with hysteresis,' IEEE, pp. 1198-1201, 2000
6 P. Ge and M. Jouaneh, 'Modeling hysteresis in piezoceramic actuators,' Precision Engineering, vol. 17, pp. 211-221, 1995   DOI   ScienceOn
7 H. Kaoru and E. Masayoshi, 'Stainless steel-based integrated mass-flow controller for reactive and corrosive gases.,' Sensors and Actuators, pp. 33-38, 2002
8 J. Schuurmans and T. Jones, 'Control of mass flow in a hot strip mill using model predictive control.,' Proc. of the 2002 IEEE int. Conf. on Control Applications, pp. 18-20, 2002
9 최성현, 가스 측정용 질량 유량계의 원리.구조와 적용, 제어계측, 자동제어계측사, pp. 37-39. 2003. 11
10 사단법인 일본계량기기공업연합회, 유량계측 A to Z, 자동제어계측사, pp. 171-180, 1997
11 Y. Isoda, 정온도차 제어방식 열식 질량 유량계, 제어계측, 자동제어계측사, pp. 86-89, 2001. 11
12 Piezosystem inc., http://www.piezo.com/
13 G. Mohamed, Flow Control, Cambridge University Press. 2000
14 J. M. T. A. Han, L. Willem, and B. Reinder, 'Modeling piezoelectric actuators,' IEEF/ASME Trans. on Mezhatronics, vol. 5, no. 4, pp. 331-341, Dec. 2002
15 'Self-learning fuzzy logic system for in situ, in-process diagnostics of mass flow controller (MFC)' IEEE Trans, Semi. Manufacturing, vol. 7, no. I, Feb. 1994
16 F. Nadi, A. M. Agogino, and D. A. Hodges, 'Use of influence diagrams and neural networks in modeling semiconductor manufacturing processes,' IEEE Trans. on Semi. Manufacturing, vol. 4, no. 1, pp. 52-58, Feb. 1991   DOI   ScienceOn
17 이명의, 정원철, '하이브리드형 질량 유량 제어기의 설계 및 실현,' 산학 기술 학회 논문지 vol. 4, no. 2, pp. 63-70, 2003