• Title/Summary/Keyword: PHA-depolymerase

Search Result 15, Processing Time 0.019 seconds

A Research and Application of Polyhydroxyalkanoates in Biosensor Chip (생분해성 고분자, 폴리하이드록시알카노에이트를 이용한 바이오센서 칩 연구와 그 응용)

  • Park, T.J.;Lee, S.Y.
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.371-377
    • /
    • 2007
  • Polyhydroxyalkanoates (PHAs) are a family of microbial polyesters that can be produced by fermentation from renewable resources. PHAs can be used as completely biodegradable plastics or elastomers. In this paper, novel applications of PHAs in biosensor are described. A general platform technology was developed by using the substrate binding domain (SBD) of PHA depolymerase as a fusion partner to immobilize proteins of interest on PHA surface. It could be shown that the proteins fused to the SBD of PHA depolymerase could be specifically immobilized onto PHA film, PHA microbead, and microcontact printed PHA surface. We review the results obtained for monitoring the specific interaction between the SBO and PHA by using enhanced green fluorescent protein, red fluorescent protein, single chain antibody against hepatitis B virus preS2 surface protein and severe acute respiratory syndrome coronavirus surface antigen as model proteins. Thus, this system can be efficiently used for studying protein-protein and possibly protein-biomolecule interactions for various biotechnological applications.

Cloning and Analysis of Medium-Chain-Length Poly(3-Hydroxyalkanoate) Depolymerase Gene of Pseudomonas luteola M13-4

  • Park, In-Jae;Rhee, Young-Ha;Cho, Nam-Young;Shin, Kwang-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1935-1939
    • /
    • 2006
  • The gene encoding the extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase of Pseudomonas luteola Ml3-4, $phaZ_{plu}$, was cloned and analyzed. It was found to be 849 bp, with a deduced protein of 282 amino acids, and was revealed to have a typical leader peptide at its N terminus. The amino acid sequence of $PhaZ_{plu}$ revealed relatively low identity (69 to 72%) with those of other Pseudomonas MCL-PHA depolymerases. In comparison with the amino acid sequences of all available MCL-PHA depolymerases, the depolymerase was found to consist of three domains in sequential order; signal peptide, an N-terminal substrate binding domain, and a catalytic domain, indicating that $PhaZ_{plu}$ belongs to the type IV depolymerases family. The enzyme also contained Asn as an oxyanion hole amino acid.

Molecular Characterization of Extracellular Medium-chain-length Poly(3-hydroxyalkanoate) Depolymerase Genes from Pseudomonas alcaligenes Strains

  • Kim Do Young;Kim Hyun Chul;Kim Sun Young;Rhee Young Ha
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.285-294
    • /
    • 2005
  • A bacterial strain M4-7 capable of degrading various polyesters, such as poly$(\varepsilon-caprolactone)$, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxyoctanoate), and poly(3-hydroxy-5-phenylvalerate), was isolated from a marine environment and identified as Pseudomonas alcaligenes. The relative molecular mass of a purified extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase $(PhaZ_{palM4-7})$ from P. alcaligenes M4-7 was 28.0 kDa, as determined by SDS-PAGE. The $PhaZ_{palM4-7}$ was most active in 50 mM glycine-NaOH buffer (pH 9.0) at $35^{\circ}C$. It was insensitive to dithiothreitol, sodium azide, and iodoacetamide, but susceptible to p-hydroxymercuribenzoic acid, N-bromosuccinimide, acetic anhydride, EDTA, diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride, Tween 80, and Triton X-100. In this study, the genes encoding MCL-PHA depolymerase were cloned, sequenced, and characterized from a soil bacterium, P. alcaligenes LB19 (Kim et al., 2002, Biomacro-molecules 3, 291-296) as well as P. alcaligenes M4-7. The structural gene $(phaZ_{palLB19})$ of MCL-PHA depolymerase of P. alcaligenes LB19 consisted of an 837 bp open reading frame (ORF) encoding a protein of 278 amino acids with a deduced $M_r$ of 30,188 Da. However, the MCL-PHA depolymerase gene $(phaZ_{palM4-7})$ of P. alcaligenes M4-7 was composed of an 834 bp ORF encoding a protein of 277 amino acids with a deduced Mr of 30,323 Da. Amino acid sequence analyses showed that, in the two different polypeptides, a substrate-binding domain and a catalytic domain are located in the N-terminus and in the C-terminus, respectively. The $PhaZ_{palLB19}$ and the $PhaZ_{palM4-7}$ commonly share the lipase box, GISSG, in their catalytic domains, and utilize $^{111}Asn$ and $^{110}Ser$ residues, respectively, as oxyanions that play an important role in transition-state stabilization of hydrolytic reactions.

Purification and Characterization of Poly(3-hydroxybutyrate) Depolymerase from a Fungal Isolate, Emericellopsis minima W2

  • Rhee, Young-Ha;Kim, Do-Young;Yun, Ji-Hye;Kim, Hyung-Woo;Bae, Kyung-Sook
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.129-133
    • /
    • 2002
  • The fungus, Emericellopsis minima W2, capable of degrading poly(3-hydroxybutyrate) (PHB) was isolated from a waste water sample. Production of the PHB depolymerase from E. minima W2 (PhaZ/ sub Emi/) was significantly repressed in the presence of glucose. PhaZ/ sub Emi/ was purified by column chromatography on Octyl-Sepharose CL-4B and Sephadex G-100. The molecular mass of the PhaZ/ sub Emi/), which consisted of a single polypeptide chain, was estimated to be 48.0 kDa by SDS-PAGE and its pI vague was 4.4. The maximum activity of the PhaZ/ sub Emi/ was observed at pH 9.0 and 55$\^{C}$. It was significantly inactivated by 1mM dithiothreitol, 2mM diisopropyl fluorphosphate, 0.1mM Tween 80, and 0.1 mM Triton X-l00, but insensitive to phenylmethylsulfonyl fluoride and N-ethylmaleimide. The PhaZ/ sub Emi/ efficiently hydrolyzed PHB and its copolyester with 30 mol% 3-hydroxyvalerate, but did not act on poly(3-hydroxyoctanoate). It also hydrolyzed p-nitrophenylacetate and p-nitrophenylbutyrate but hardly affected the longer-chain forms. The main hydrolysis product of PHB was identified as a dimer of 3-hydroxybutyrate.

In Silico Metagenomes Mining to Discover Novel Esterases with Industrial Application by Sequential Search Strategies

  • Barriuso, Jorge;Jesus Martinez, Maria
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.732-737
    • /
    • 2015
  • We present here an in silico search of fungal sterol-esterase/lipase and bacterial depolymerase sequences from environmental metagenomes. Both enzyme types contain the α/β-hydrolase protein fold. Analysis of DNA conserved motifs, protein homology search, phylogenetic analysis, and protein 3D modeling have been used, and the efficiency of these screening strategies is discussed. The presence of bacterial genes in the metagenomes was higher than those from fungi, and the sequencing depth of the metagenomes seemed to be crucial to allow finding enough diversity of enzyme sequences. As a result, a novel putative PHA-depolymerase is described.

Biosynthesis, Modification, and Biodegradation of Bacterial Medium-Chain-Length Polyhydroxyalkanoates

  • Kim, Do-Young;Kim, Hyung-Woo;Chung, Moon-Gyu;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.87-97
    • /
    • 2007
  • Medium-chain-length polyhydroxyalkanoates (MCL-PHAs), which have constituents with a typical chain length of $C_{6}-C_{14}$, are polyesters that are synthesized and accumulated in a wide variety of Gram-negative bacteria, mainly pseudomonads. These biopolyesters are promising materials for various applications because they have useful mechanical properties and are biodegradable and biocompatible. The versatile metabolic capacity of some Pseudomonas spp. enables them to synthesize MCL-PHAs that contain various functional substituents; these MCL-PHAs are of great interest because these functional groups can improve the physical properties of the polymers, allowing the creation of tailor-made products. Moreover, some functional substituents can be modified by chemical reactions to obtain more useful groups that can extend the potential applications of MCL-PHAs as environmentally friendly polymers and functional biomaterials for use in biomedical fields. Although MCL-PHAs are water-insoluble, hydrophobic polymers, they can be degraded by microorganisms that produce extracellular MCL-PHA depolymerase. MCL-PHA-degraders are relatively uncommon in natural environments and, to date, only a limited number of MCL-PHA depolymerases have been investigated at the molecular level. All known MCL-PHA depolymerases share a highly significant similarity in amino acid sequences, as well as several enzymatic characteristics. This paper reviews recent advances in our knowledge of MCL-PHAs, with particular emphasis on the findings by our research group.

Biodegradation of Medium-chain-length Polyhydroxyalkanoates by Pseudomonas sp. RY-1 (Pseudomonas sp. RY-1에 의한 Medium-chain-length Polyhydroxyalkanoates의 생분해)

  • 류강은;김영백;양영기;이영하
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.84-90
    • /
    • 2000
  • Biodegradation of vanous medium-chain-length polyhydroxyalkanoates (MCL-PHAs) by an extracellular depolymerase system from Pseudomonas sp. RY-1 was investigated under laboratoly conditions. The degradation rate of the polymers was determined by quantitative clem zone technique, enzyme (turbidity) assay, and respirometry assay. Although the enzyme system secreted by Pscudomor~as sp. RY-1 was capable of degrading all MCL-PHAs tested. its secretion was influenced by the availability of secondary carbon sources. The rate of enzymatic degradation of MCL-PHAs was dependent upou the monomeric composition of the polyesters and reduced as the chain lengths of the monomer m t s in the polyesters increased. MCL-PHAs containing C-even monomer units showed faster degradation rate than MCL-PHAs containing C-odd monomer units. Respiration rates of MCL-PHAs with C-even monomer uuts were also much faster than those of MCL-PHAs with C-odd monomer units. The degmdation rate of MCL-PHAs bearing unsaturated substituents was faster than that of mcl-PHAs without functional substituents, which is suggesting the correlation between the degradation rate and the crystallinity of MCL-PHAs.

  • PDF

Molecular Structure of PCR Cloned PHA Synthase Genes of Pseudomonas putida KT2440 and Its Utilization for Medium-Chain Length Polyhydroxyalkanoate Production

  • Kim, Tae-Kwon;Shin, Hyun-Dong;Seo, Min-Cheol;Lee, Jin-Nam;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.182-190
    • /
    • 2003
  • A new phaC gene cluster encoding polyhydroxyalkanoate (PHA) synthase I PHA depolymerase, and PHA synthase II was cloned using the touchdown PCR method, from medium-chain length (mcl-) PHA-producing strain Pseudomonas putida KT2440. The molecular structure of the cloned phaCl gene was analyzed, and the phylogenic relationship was compared with other phaCl genes cloned from Pseudomonas species. The cloned phaCl gene was expressed in a recombinant E. coli to the similar level of PHA synthase in the parent strain P. putida KT2440, but no significant amount of mcl-PHA was accumulated. The isolated phaCl gene was re-introduced into the parent strain P. putida KT2440 to amplify the PHA synthase I activity, and the recombinant P. purida accumulated mcl-PHA more effectively, increasing from 26.6 to $43.5\%$. The monomer compositions of 3-hydroxylalkanoates in mcl-PHA were also modified significantly in the recombinant P. putida enforcing the cloned phaCl gene.

Isolation of an Aromatic Polyhydroxyalkanoates-degrading Bacterium

  • JU, HE-SUG;JUNGHO KIM;HOON KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.540-542
    • /
    • 1998
  • Five microorganisms capable of degrading an aromatic medium-chain-length polyhydroxyalkanoate ($PHA_{MCL}$), poly(3-hydroxy-5-phenylvalerate) (PHPV), were isolated from wastewater-treatment sludge. Among the isolates, JS02 showed degrading activity consistantly during several transfers. The isolate JS02 could hydrolyze another aromatic MCL copolyester, poly(3-hydroxy-5-phenoxyvalerate-co-3-hydroxy-7-phenoxyheptanoate), [P(5POHV-co-7POHH)], and other short-chain-length PHAs ($PHA_{SCL}) such as poly(3-hydroxybutyrate) [P3(HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3 HB-co-4 HB)], and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with relatively low activity. The culture supernatant of JS02 showed hydrolyzing activity for the p-nitrophenyl esters of fatty acids.

  • PDF

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.