Browse > Article

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria  

Oh, Jung-Sook (Biomaterials Science Laboratory, Division of Applied Life Sciences (BK21), Graduate School, Central Laboratory R&D Center, MUHAK Co., LTD.)
Choi, Mun-Hwan (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Yoon, Sung-Chul (Biomaerals Science Laboratory, Division of Applied Life Sciences (BK21), Graduate School, Division of Life Science, College of Natural Sciences, Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.6, 2005 , pp. 1330-1336 More about this Journal
Abstract
Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.
Keywords
PHA degradation kinetics; bacteria; PHA;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Choi, M. H., J. K. Rho, H.-J. Lee, J. J. Song, S. C. Yoon, and S. Y. Lee. 2003. First order kinetics analysis of monomer composition dependent polyhydroxyalkanoic acid degradation in Pseudomonas spp. Biomacromolecules 4: 424-428   DOI   ScienceOn
2 Doi, Y., Y. Nakamura, and K. Soga. 1988. Nuclear magnetic resonance studies on unusual bacterial copolyesters of 3- hydroxybutyrate and 4-hydroxybutyrate. Macromolecules 21: 2722-2727   DOI   ScienceOn
3 Jendrossek, D. and R. Handrick. 2002. Microbial degradation of polyhydroxyalkanoates. Annu. Rev. Microbiol. 56: 403-432   DOI   ScienceOn
4 Kobayashi, T., M. Shiraki, T. Abe, A. Sugiyama, and T. Saito. 2003. Purification of properties of an intracellular 3- hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3- hydroxybutyrate) depolymerase. J. Bacteriol. 185: 3485-3490   DOI   ScienceOn
5 Lee, H.-J., M. H. Choi, T. U. Kim, and S. C. Yoon. 2001. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2- bromooctanoic acid. Appl. Environ. Microbiol. 67: 4963-4974   DOI   ScienceOn
6 Lundgren, D. G., R. Alper, C. Schnaitman, and R. H. Marchessault. 1965. Characterization of poly-$\beta$-hydroxybutyrate extracted from different bacteria. J. Bacteriol. 89: 245-251   DOI   PUBMED
7 Seo, M. C., H. D. Shin, and Y.-H. Lee. 2004. Transcriptional level of granule-associated phaP and phaR genes and granular morphogenesis of poly-$\beta$-hydroxybutyrate granules Ralstonia eutropha. Biotechnol. Lett. 26: 617-622   DOI   ScienceOn
8 Chung, D. M., M. H. Choi, J. J. Song, S. C. Yoon, I.-K. Kang, and N. E. Huh. 2001. Intracellular degradation of two structurally different polyhydroxyalkanoic acid accumulated in Pseudomonas putida and Pseudomonas citronellolis from mixtures of octanoic acid and 5-phenylvaleric acid. Int. J. Biol. Macromol. 29: 243-250   DOI   ScienceOn
9 Hong, S. H., S. Y. Moon, and S. Y. Lee. 2003. Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. J. Microbiol. Biotechnol. 13: 571-577
10 Kawaguchi, Y. and Y. Doi. 1990. Structure of native poly(3- hydroxybutyrate) granules characterized by X-ray diffraction. FEMS Microbiol. Lett. 79: 151-156
11 Kim, T.-K., H.-D. Shin, M.-C. Seo, J.-N. Lee, and Y.-H. Lee. 2003. Molecular structure of PCR cloned PHA synthase genes of Pseudomonas putida KT2440 and its utilization for medium-chain length polyhydroxyalkanoate production. J. Microbiol. Biotechnol. 13: 182-190
12 Choi, M. H. and S. C. Yoon. 1994. Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl. Environ. Microbiol. 60: 3245-3254
13 Rhee, K.-H. 2003. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J. Microbiol. Biotechnol. 13: 984-988
14 Nickerson, K. W. 1982. Purification of poly-$\beta$-hydroxybutyrate by density gradient centrifugation in sodium bromide. Appl. Environ. Microbiol. 43: 1208-1209
15 Shaw, G. L., M. K. Melby, D. M. Horowitz, J. Keeler, and J. K. M. Sanders. 1994. Nuclear magnetic resonance relaxation studies of poly(hydroxybutyrate) in whole cells and in artificial granules. Int. J. Biol. Macromol. 16(2): 59-63   DOI   ScienceOn
16 Yoon, S. C. and M. H. Choi. 1999. Local sequence dependence of polyhydroxyalkanoic acid degradation in Hydrogenophaga pseudoflava. J. Biol. Chem. 274(53): 37800-37808   DOI   ScienceOn
17 Choi, M. H., H.-J. Lee, J. K. Rho, S. C. Yoon, J. D. Nam, D. Lim, and R. W. Lenz. 2003. Biosynthesis and local sequence specific degradation of poly(3-hydroxyvalerateco- 4-hydroxybutyrate) in Hydrogenophaga pseudoflava. Biomacromolecules 4: 38-45   DOI   ScienceOn
18 Song, J. J., S. C. Yoon, S. M. Yu, and R. W. Lenz. 1998. Differential scanning calorimetric study of poly(3- hydroxyoctanoate) inclusions in bacterial cells. Int. J. Biol. Macromol. 23: 165-173   DOI   ScienceOn
19 York, G. M., J. Lupberger, J. Tian, A. G. Lawrence, J. A. Stubbe, and A. J. Sinskey. 2003. Ralstonia eutropha H16 encodes two and possibly three intracellular poly[D-(-)-3-hydroxybutyrate] depolymerase genes. J. Bacteriol. 185: 3788-3794   DOI   ScienceOn
20 Madison, L. L. and G. W. Huisman. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53
21 Choi, M. H., S. C. Yoon, and R. W. Lenz. 1999. Production of poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly(4-hydroxybutyric acid) without subsequent degradation by Hydrogenophaga pseudoflava. Appl. Environ. Microbiol. 65(4): 1570-1577
22 Saito, Y. and Y. Doi. 1994. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int. J. Biol. Macromol. 16: 99-104   DOI   ScienceOn
23 Barnard, G. N. and J. K. M. Sanders. 1988. Observation of mobile poly($\beta$-hydroxybutyrate) in the storage granules of Methylobacterium AM1 by in vivo $^{13}C$-NMR spectroscopy. FEBS Lett. 231: 16-18   DOI   ScienceOn
24 Curley, J. M., R. W. Lenz, R. C. Fuller, S. E. Browne, C. B. Gabriel, and S. Panday. 1997. $^{13}C$ n.m.r. spectroscopy in living cell of Pseudomonas oleovorans. Polymer 38(21): 5313-5319   DOI   ScienceOn
25 Lee, H.-J., J. K. Rho, K. A. Noghabi, S. E. Lee, M. H. Choi, and S. C. Yoon. 2004. Channeling of intermediates derived from medium-chain fatty acids and de novo-synthesized fatty acids to polyhydroxyalkanoic acid by 2-bromooctanoic acid in Pseudomonas fluorescens BM07. J. Microbiol. Biotechnol. 14: 1256-1266
26 Lee, H.-J., J. K. Rho, and S. C. Yoon. 2004. Growth temperature-dependent conversion of de novo-synthesized unsaturated fatty acids into polyhydroxyalkanoic acid and membrane cyclopropane fatty acids in the psychrotrophic bacterium Pseudomonas fluorescens BM07. J. Microbiol. Biotechnol. 14: 1217-1226
27 Barnard, G. N. and J. K. M. Sanders. 1989. The poly-$\beta$- hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. J. Biol. Chem. 264: 3286-3291
28 Song, J. J. and S. C. Yoon. 1996. Biosynthesis of novel aromatic copolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomonas putida BM01. Appl. Environ. Microbiol. 62: 536-544
29 Walther-Mauruschat, A., M. Aragno, F. Mayer, and H. G. Schlegel. 1977. Micromorphology of gram-negative hydrogen bacteria. Cell envelope, membranes, and cytoplasmic inclusions. Arch. Microbiol. 114: 101-110   DOI   ScienceOn
30 Alper, R., D. G. Lundgren, R. H. Marchessault, and W. A. Cote. 1963. Properties of poly-$\beta$-hydroxybutyrate. I. General considerations concerning the naturally occurring polymer. Biopolymers 1: 545-556   DOI