Browse > Article

A Research and Application of Polyhydroxyalkanoates in Biosensor Chip  

Park, T.J. (Department of Chemical & Biomolecular Engineering (BK21 program), BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute ofr the BioCentury, and Center for Ultramicrochemical Process Systems)
Lee, S.Y. (Department of Bio & Brain Engineering and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology)
Publication Information
KSBB Journal / v.22, no.6, 2007 , pp. 371-377 More about this Journal
Abstract
Polyhydroxyalkanoates (PHAs) are a family of microbial polyesters that can be produced by fermentation from renewable resources. PHAs can be used as completely biodegradable plastics or elastomers. In this paper, novel applications of PHAs in biosensor are described. A general platform technology was developed by using the substrate binding domain (SBD) of PHA depolymerase as a fusion partner to immobilize proteins of interest on PHA surface. It could be shown that the proteins fused to the SBD of PHA depolymerase could be specifically immobilized onto PHA film, PHA microbead, and microcontact printed PHA surface. We review the results obtained for monitoring the specific interaction between the SBO and PHA by using enhanced green fluorescent protein, red fluorescent protein, single chain antibody against hepatitis B virus preS2 surface protein and severe acute respiratory syndrome coronavirus surface antigen as model proteins. Thus, this system can be efficiently used for studying protein-protein and possibly protein-biomolecule interactions for various biotechnological applications.
Keywords
Poly(3-hydroxybutyrate); P(3HB) depolymerase; substrate binding domain; protein microarray;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fortina, P., L. J. Kricka, S. Surrey, and P. Grodzinski (2005), Nanobiotechnology: the promise and reality of new approaches to molecular recognition, Trends Biotechnol. 23, 168-173   DOI   ScienceOn
2 Whitesides, G. M. (2003), The 'right' size in nanobiotechnology, Nat. Biotechnol. 18, 760-763
3 Laval, J. M, P. E. Mazeran, and D. Thomas (2000), Nanobiotechnology and its role in the development of new analytical devices, Analyst 125, 29-33   DOI   ScienceOn
4 Lowe, C. R. (2000), Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures, Curr. Opin. Struct. Biol. 10, 428-434   DOI   ScienceOn
5 Wilson, D. S. and S. Nock (2003), Recent developments in protein microarray technology, Angew. Chem. Int. Ed. 42, 494-500   DOI   ScienceOn
6 Cha, T.-W., A. Guo, Y. Jun, D. Pei, and X.-Y. Zhu (2004), Immobilization of oriented protein molecules on poly(ethylene glycol)-coated Si(111), Proteomics 4, 1965-1976   DOI   ScienceOn
7 Brandl, H., R. A. Gross, R. W. Lenz, and R. C. Fuller (1990), Plastics from bacteria and for bacteria: polyhydroxyalkanoates as natural, biocompatible, and biodegradable polyesters, Adv. Biochem. Eng. Biotechnol. 41, 77-93
8 Choi, J., S. Y. Lee, and K. Han (1998), Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of poly(3-hydroxybutyrate) in Escherichia coli, Appl. Environ. Microbiol. 64, 4897-4903
9 Dennis, D., M. McCoy, A. Stangl, H. E. Valentin, and Z. Wu (1998), Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha, J. Biotechnol. 64, 177-186   DOI   ScienceOn
10 Wang, J. and J. Yu (2001), Kinetic analysis on formation of poly(3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions, J. Ind. Microbiol. Biotechnol. 26, 121-126   DOI
11 Guo-Qiang, C., X. Jun, W. Qiong, Z. Zengming, and H. Kwok- Ping (2001), Synthesis of copolyesters consisting of medium-chain-length polyhydroxyalkanoates by Pseudomonas stutzeri 1317, React. Funct. Polym. 48, 107-112   DOI   ScienceOn
12 Choi, J. and S. Y. Lee (1999), High-level production of poly(3- hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli, Appl. Environ. Microbiol. 65, 4363-4368
13 Potter, M. and A. Steinbuchel (2005), Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation, Biomacromolecules 6, 552-560   DOI   ScienceOn
14 Kikkawa, Y., M. Fujitam, T. Hiraishi, M. Yoshimoto, and Y. Doi (2004), Direct observation of poly(3-hydroxybutyrate) depolymerase adsorbed on polyester thin film by atomic force microscopy, Biomacromolecules 5, 1642-1646   DOI   ScienceOn
15 Brandl, H., E. J. Knee, R. C. Fuller, R. A. Gross, and R. W. Renz (1989), Ability of the phototrophic bacterium Rhodospirillum rubum to produce various poly($\beta$-hydroxyalkanoates): potential sources for biodegradable polyester, Int. J. Biol. Macromol. 11, 49-55   DOI   ScienceOn
16 Lee, S. H., D. H. Oh, W. S. Ahn, Y. Lee, J. Choi, and S. Y. Lee (2000), Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila, Biotechnol. Bioeng. 67, 240-244   DOI   ScienceOn
17 Doi, Y., S. Kitamura, and H. Abe (1995), Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate, Macromolecules 28, 4822-4828   DOI   ScienceOn
18 Shinomiya, M., T. Iwata, and Y. Doi (1998), The adsorption of substrate-binding domain of PHB depolymerases to the surface of poly(3-hydroxybutyric acid), Int. J. Biol. Macromol. 22, 129-135   DOI   ScienceOn
19 Park, T. J., J. P. Park, S. J. Lee, H. J. Hong, and S. Y. Lee (2006), Polyhydroxyalkanoate chip for the specific immobilization of recombinant proteins and its applications in immunodiagnostics, Biotechnol. Bioprocess Eng. 11, 173-177   과학기술학회마을   DOI   ScienceOn
20 Bouaidat, S., C. Berendsen, P. Thomsen, S. G. Petersen, A. Wolff, and J. Jonsmann (2004), Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications, Lab Chip 4, 632-637   DOI   ScienceOn
21 Lee, K., F. Pan, G. T. Carroll, N. J. Turro, and J. T. Koberstein (2004), Photolithographic technique for direct photochemical modification and chemical micropatterning of surfaces, Langmuir 20, 1812-1818   DOI   ScienceOn
22 Frey, W., D. E. Meyer, and A. Chilkoti (2003), Dynamic addressing of a surface pattern by a stimuli-responsive fusion protein, Adv. Mater. 15, 248-251   DOI   ScienceOn
23 Zhu, H. and M. Snyder (2003), Protein chip technology, Curr. Opin. Chem. Biol. 7, 55-63   DOI   ScienceOn
24 Bourque, D., B. Ouellette, G. Andre, and D. Groleau (1992), Production of polybeta-hydroxybutyrate from methanol: characterization of a new isolate of Methylobacterium extorquens, Appl. Microbiol. Biotechnol. 37, 7-12
25 Gangrade, N. and J. C. Price (1991), Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties, J. Microencapsul. 8, 185-202   DOI
26 Park, J. P., K.-B. Lee, S. J. Lee, T. J. Park, M. G. Kim, B. H. Chung, Z.-W. Lee, I. S. Choi, and S. Y. Lee (2005), Micropatterning proteins on polyhydroxyalkanoate substrates by using the substrate binding domain as a fusion partner, Biotechnol. Bioeng. 92, 160-165   DOI   ScienceOn
27 Kato, M., H. J. Bao, C. K. Kang, T. Fukui, and Y. Doi (1996), Production of a novel copolyester of 3-hydroxybutyric acids and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars, Appl. Microbiol. Biotechnol. 45, 363-370   DOI
28 Park, S. J., W. S. Ahn, P. R. Green, and S. Y. Lee (2001), Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3- hydroxyhexanoate) by metabolically engineered Escherichia coli strains, Biotechnol. Bioeng. 74, 81-86
29 Lee, S. Y. (1996), Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria, Trends Biotechnol. 14, 431-438   DOI   ScienceOn
30 MacBeath, G. and Schreiber, S. L. (2000), Printing proteins as microarrays for high-throughput function determination, Science 289, 1760-1763
31 Kang, C. K., H. S. Lee, and J. H. Kim (1993), Accumulation of PHA and its copolyester by Methylobaterium sp. KCTC 0048, Biotechnol. Lett. 15, 1017-1020   DOI
32 Ashby, R. D., D. K. Y. Solaiman, and T. A. Foglia (2002), The synthesis of short and medium-chain-length poly(hydroxyalkanoates) mixtures from glucose- or alkanoic acid-grown Pseudomonas oleovorans, J. Ind. Microbiol. Biotechnol. 28, 147-153   DOI
33 Kasuya, K. T. Ohura, K. Masuda, and Y. Doi (1999), Substrate and binding specificities of bacterial polyhydroxybutyrate depolymerases, Int. J. Biol. Macromol. 24, 329-336   DOI   ScienceOn
34 Rajagopal, K. and J. P. Schneider (2004), Self-assembling peptides and proteins for nanotechnological applications, Curr. Opin. Struct. Biol. 14, 480-486   DOI   ScienceOn
35 Ito, Y. (2000), Micropattern immobilization of polysaccharide, J. Inorg. Biochem. 79, 77-81   DOI   ScienceOn
36 Steinbuchel, A. (1991), Polyhydroxyalkanoic acids, in: Biomaterials: novel materials from biological sources, D. Byrom, Eds., p124, Stockton, New York
37 Haywood, G. W., A. J. Anderson, G. A. Williams, E. A. Dawes, and D. F. Ewing (1991), Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126, Int. J. Biol. Macromol. 13, 83-87   DOI   ScienceOn
38 Tanaka, M., A. P. Wong, F. Rehfeldt, M. Tutus, and S. Kaufmann (2004), Selective deposition of native cell membranes on biocompatible micropatterns, J. Am. Chem. Soc. 126, 3257-3260   DOI   ScienceOn
39 Wang, F. and S. Y. Lee (1997), Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation, Appl. Environ. Microbiol. 63, 3703-3706
40 Shadnam, M. R., S. E. Kirkwood, R. Fedosejevs, and A. Amirfazli (2004), Direct patterning of self-assembled monolayers on gold using a laser beam, Langmuir 30, 2667-2676
41 Cho, K.-S., H. W. Ryu, C.-H. Park, and P. R. Goodrich (1997), Poly(hydroxybutyrate-co-hydroxyvalerate) from swine waste liquor by Azotobacter vinelandii UWD, Biotechnol. Lett. 19, 7-10   DOI   ScienceOn
42 Jain, K. K. (2000), Applications of biochip and microarray systems in pharmacogenomics, Pharmacogenomics 1, 289-307   DOI   ScienceOn
43 Lee, S. Y. and E. T. Papoutsakis (1999), Metabolic engineering, Marcel Dekker, Inc., New York
44 Ahn, W. S., S. J. Park, and S. Y. Lee (2000), Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution, Appl. Environ. Microbiol. 66, 3624-3627   DOI
45 Kasuya, K., Y. Inoue, and Y. Doi (1996), Adsorption kinetics of bacterial PHB depolymerase on the surface of polyhydroxyalkanoate films, Int. J. Biol. Macromol. 19, 35-40   DOI   ScienceOn
46 Steinbuchel, A. (2001), Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example, Macromol. Biosci. 1, 1-24   DOI
47 Niemeyer, C. M. (2000), Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology, Curr. Opin. Chem. Biol. 4, 609-618   DOI   ScienceOn
48 Lenz, R. W. and R. H. Marchessault (2005), Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology, Biomacromolecules 6, 1-8   DOI   ScienceOn
49 Niemeyer, C. M. and C. A. Mirkin (2004), Nanobiotechnology: Concepts, Applications and Perspectives, John Wiley & Sons, Inc., New Jersey
50 Shirahata, N., T. Yonezawa, Y. Miura, K. Kobayashi, and K. Koumoto (2003), Patterned adsorption of protein onto a carbohydrate monolayer immobilized on Si, Langmuir 19, 9107-9109   DOI
51 Whitesides, G. M., E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber (2001), Soft lithography in biology and biochemistry, Annu. Rev. Biomed. Eng. 3, 335-373   DOI   ScienceOn
52 Hodneland, C. D., Y.-S. Lee, D.-H. Min, and M. Mrksich (2002), Selective immobilization of protein to self-assembled monolayers presenting active site directed capture ligands, Proc. Natl. Acad. Sci. 99, 5048-5052
53 Kobayashi, G., T. Shiotani, Y. Shima, and Y. Doi (1994), Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) from oils and fats by Aeromonas sp. OL-338 and Aeromonas sp. FA440, in: Biodegradable Plastics and Polymers, Doi and Fukuda, Eds., p410, Elsevier, Amsterdam
54 Jendrossek, D. and R. Handrick (2002), Microbial degradation of polyhydroxyalkanoates, Ann. Rev. Microbiol. 56, 403-432   DOI   ScienceOn
55 Lee, S. Y. (1996), Bacterial polyhydroxyalkanoates, Biotechnol. Bioeng. 49, 1-14   DOI
56 Lee, S. J., J. P. Park, T. J. Park, S. Y. Lee, S. Lee, and J. K. Park (2005), Selective immobilization of fusion proteins on poly(hydroxyalkanoate) microbeads, Anal. Chem. 77, 5755-5759   DOI   ScienceOn
57 Gourley, P. L. (2005), Brief overview of biomicronano technologies, Biotechnol. Prog. 21, 2-10   DOI   ScienceOn
58 Lee, S. J. and S. Y. Lee (2004), Micro total analysis system ($\mu$-TAS) in biotechnology, Appl. Microbiol. Biotechnol. 64, 289-299   DOI
59 Madison, L. L. and G. W. Huisman (1999), Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic, Microbiol. Mol. Biol. Rev. 63, 21-53