• Title/Summary/Keyword: PFC(Power-Factor-Correction)

Search Result 315, Processing Time 0.023 seconds

A New Zero Voltage Transition Bridgeless PFC with Reduced Conduction Losses

  • Mahdavi, Mohammad;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.708-717
    • /
    • 2009
  • In this paper a new zero voltage transition PWM bridgeless PFC is introduced. The auxiliary circuit provides soft switching condition for all semiconductor devices. Also, in the resonant path of the auxiliary circuit, only two semiconductor devices exist. Therefore the resonant conduction losses are low. Furthermore, the auxiliary circuit semiconductor elements consist of only one diode and one switch. The proposed auxiliary circuit is applied to a bridgeless PFC converter to further reduce conduction and switching losses. In this paper, the operating modes of this converter are explained and the resulting ideal and simulation waveforms are shown. The presented experimental results justify the theoretical analysis.

Efficiency and Design Analysis of Power Conversion Unit for Household Appliances according to PFC Type (가전제품용 전력변환 장치의 PFC 구조에 따른 시스템 효율 분석 및 설계)

  • Park, Sang-Min;Kim, Dong-Hee;Joo, Dong-Myoung;Kim, Min-Jung;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.417-418
    • /
    • 2014
  • 본 논문은 PFC (Power Factor Correction)와 절연형 DC-DC 컨버터의 2단 구조를 갖는 가전제품용 저전압 시스템의 효율을 분석하며, 이에 따른 Buck 및 Boost PFC 토폴로지와 절연형 DC-DC 컨버터 효율 및 설계 차이점을 비교한다. PFC 구조에 따른 각 시스템의 역률 규제 만족 여부와 시스템 효율을 이론적 해석 및 시뮬레이션을 통해 검증한다.

  • PDF

Totem-pole Bridgeless Boost PFC Converter Based on GaN FETs (GaN FET을 이용한 토템폴 구조의 브리지리스 부스트 PFC 컨버터)

  • Jang, Paul;Kang, Sang-Woo;Cho, Bo-Hyung;Kim, Jin-Han;Seo, Han-Sol;Park, Hyun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.214-222
    • /
    • 2015
  • The superiority of gallium nitride FET (GaN FET) over silicon MOSFET is examined in this paper. One of the outstanding features of GaN FET is low reverse-recovery charge, which enables continuous conduction mode operation of totem-pole bridgeless boost power factor correction (PFC) circuit. Among many bridgeless topologies, totem-pole bridgeless shows high efficiency and low conducted electromagnetic interference performance, with low cost and simple control scheme. The operation principle, control scheme, and circuit implementation of the proposed topology are provided. The converter is driven in two-module interleaved topology to operate at a power level of 5.5 kW, whereas phase-shedding control is adopted for light load efficiency improvement. Negative bias circuit is used in gate drivers to avoid the shoot-through induced by high speed switching. The superiority of GaN FET is verified by constructing a 5.5 kW prototype of two-module interleaved totem-pole bridgeless boost PFC converter. The experiment results show the highest efficiency of 98.7% at 1.6 kW load and an efficiency of 97.7% at the rated load.

A PSpice Modeling of PFC Circuit Using Soft-Switched Boost Converter

  • Mok, H.S.;Choe, G.H.;Jeong, S.E.;Choi, J.Y.
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.393-399
    • /
    • 1997
  • Single-phase and three-phase AC to DC power converters are becoming frequently used for high voltage/high power applications such as telecommunications. They often require input/output transformer isolation for safety, a unity input power factor for minimum reactive power, free input harmonic currents fed back to the AC Power distribution system and, finally, high efficiency and high power density for minimum weight and volume. The proposed boost converter for power factor correction (PFC) provides an unity input power factor, low harmonic distortion and high efficiency along with reduced volume and weight. Single-phase 220VAC input/380VDC 1KW output prototype is constructed and experimental results will be verified with those of PSpice simulation.

  • PDF

Implementation of the BLDC Motor Drive System using PFC converter and DTC (PFC 컨버터와 DTC를 이용한 BLDC 모터의 구동 시스템 구현)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.62-70
    • /
    • 2007
  • In this paper, the boost Power Factor Correction(PFC) technique for Direct Torque Control(DTC) of brushless DC motor drive in the constant torque region is implemented on a TMS320F2812DSP. Unlike conventional six-step PWM current control, by properly selecting the inverter voltage space vectors of the two-phase conduction mode from a simple look-up table at a predefined sampling time, the desired quasi-square wave current is obtained, therefore a much faster torque response is achieved compared to conventional current control. Furthermore, to eliminate the low-frequency torque oscillations caused by the non-ideal trapezoidal shape of the actual back-EMF waveform of the BLDC motor, a pre-stored back-EMF versus position look-up table is designed. The duty cycle of the boost converter is determined by a control algorithm based on the input voltage, output voltage which is the dc-link of the BLDC motor drive, and inductor current using average current control method with input voltage feed-forward compensation during each sampling period of the drive system. With the emergence of high-speed digital signal processors(DSPs), both PFC and simple DTC algorithms can be executed during a single sampling period of the BLDC motor drive. In the proposed method, since no PWM algorithm is required for DTC or BLDC motor drive, only one PWM output for the boost converter with 80 kHz switching frequency is used in a TMS320F2812 DSP. The validity and effectiveness of the proposed DTC of BLDC motor drive scheme with PFC are verified through the experimental results. The test results verify that the proposed PFC for DTC of BLDC motor drive improves power factor considerably from 0.77 to as close as 0.9997 with and without load conditions.

A novel PFC AC/DC converter for reducing conduction losses (도통손실 저감형 역률 보상 AC/DC 컨버터)

  • Kang, Feel-Soon;Choi, Cheul;Park, Sung-Jun;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.52-58
    • /
    • 2000
  • This paper presents a novel power factor corrected(PFC) single-stage AC/DC half-bridge converter, which features discontinuous conduction mode(DCM) and soft-switching. The reduced conduction losses are achieved by the employment of a novel powder factor correction circuitry, instead of the conventional configuration composed of a front-end rectifier followed by a boost converter. To identify the validity of the proposed converter, simulated results of 500[W] converter with 100[V] input voltage and 50[V]output voltage are presented.

  • PDF

A Study on Simple Single phase Air-conditioner of Power factor Correction Circuit (심플한 단상 에어컨의 역률개선회로에 관한 연구)

  • 문상필;서기영;이현우;김영문;김영철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • This paper describes the simple single phase air-conditioner of power factor correction (PFC) circuit. By adopting PFC in the rectifier, we can reduce harmonic into power line, improve the efficiency and lower the total system cost compared to conventional inviter only. Also, system performance is improved by stabilizing the output voltage of PFC. To improve the current waveform of diode rectifiers, we propose a new operating principle for the voltage diode rectifiers. A circuit design method is shown by experimentation and confirmed simulation. It explained that compared conventional pulse-width modulated (PWM) inverter with half pulse-width modulated (HPWM) inverter HPWM inverter. Proposed HPWM inverter eliminated dead-time by lowering switching loss and holding over-shooting.

  • PDF

Digital Control of a Power Factor Correction Boost Rectifier Using Diode Current Sensing Technique

  • Shin, Jong-Won;Hyeon, Byeong-Cheol;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.903-910
    • /
    • 2009
  • In this paper, a digital average current mode control using diode current sensing technique is proposed. Although the conventional inductor current sensing technique is widely used, the sensed signal of the current is negative. As a result, it requires an additional circuit to be applied to general digital controller ICs. The proposed diode current sensing method not only minimizes the peripheral circuit around the digital IC but also consumes less power to sense current information than the inductor current sensing method. The feasibility of the proposed technique is verified by experiments using a 500W power factor correction (PFC) boost rectifier.

A study on the Efficiency characteristics of the CRM PFC using GaN FET (GaN FET를 적용한 CRM PFC의 효율특성에 관한 연구)

  • Gil, Young-Man;Choi, Hyun-Su;Jin, Gi-Seok;Ahn, Tae-Young;Jang, Jin-Haeng
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.89-90
    • /
    • 2014
  • Recently, one of the switching rectifiers, Power Factor Correction Circuit is often applied in rectification stage to get high efficient conversion of AC-DC SMPS However, it becomes important to select optimal semiconductor switch as well as to design optimal rectifier for achieving higher power conversion. We performed experiments with MOSFET, SiC and GaN FET that are widely used in 600 W Interleaved CRM PFC and include the data in this report. The results are presented for discrete semiconductor and integrated implementations of interleaved CRM PFC.

  • PDF

A Study On The Power Factor Correction Of The Boost Converter Without The Input Current Measurement (입력 전류의 측정이 필요없는 Boost 컨버터의 역률 보정에 관한 연구)

  • Cho, Sang-Jun;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.376-378
    • /
    • 1996
  • This paper presents a new PFC control method which replaces a fast line current measurement with a filtered load current measurement. Using the power balance relation between the input and the output of the boost converter. the input current can be described as the function of load current. Thus the PWM signal which effects the switching control of the boost converter is generated using the PFC input voltage, the PFC output voltage and the load current as input variables. By using a filter between the bridge rectifier and a dc-to-dc converter, the input voltage of the dc-to-dc converter is forced to always maintain above zero volt. Then the input current traces a sinewave in phase. The proposed scheme accomplishes a very high power factor and a low harmonic distortion of the line current. The validity of this scheme is demonstrated through simulation.

  • PDF