• Title/Summary/Keyword: PEG aqueous solution

Search Result 50, Processing Time 0.024 seconds

Preparation and Characterization of Cy5.5-conjugated Biocompatible Polymeric Micellar Nanoparticles for Optical Imaging (광학 영상을 위한 Cy5.5가 결합된 생체적합성 고분자 마이셀 나노입자의 제조 및 특성분석)

  • Kim, Hyo-Jeong;Kim, Byung-Jin;Lee, Ha-Yeong;Jung, Suk Hyun;Jeong, Seo-Young;Yuk, Soon-Hong;Shin, Byung-Cheo;Seong, Ha-Soo;Choi, Youn-Woong;Ha, Dae-Chul;Choi, Sun-Hang;Lee, Soo-Min
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.6
    • /
    • pp.393-400
    • /
    • 2009
  • PHEA (hydroxyethyl-aspartamide)-mPEG (methoy-polyethyleneglycol)-$C_{16}$ (hexadecylamine)-ED (ethylenediamine) was prepared as a drug delivery carrier. The structure and molecular weight of polymers were characterized by $^1H$-NMR and gel permeation chromatography. Micelle size and shape were measured by electro-photometer light scattering and transmission electron microscope. The mean diameter of micelles was 23 nm in aqueous solution. To evaluate the potential of these polymeric micelles as a drug carrier, PSI-mPEG-$C_{16}$-ED was conjugated with Cy5.5 for Near-Infrared Fluorescent (NIRF) based optical imaging. PSI-mPEG-$C_{16}$-ED-Cy5.5 was injected intravenously into mice (n=5) and in vivo NIRF imaging was performed during 48 h after injection. The biodistribution study at 24 h after injection showed the longcirculation property of PSI-mPEG-$C_{16}$-ED-Cy5.5. Therefore, PSI-mPEG-$C_{16}$-ED micelles could be a promising drug carrier and imaging agent.

Highly Efficient Production of Monodisperse Poly(ethylene glycol) (PEG) Hydrogel Microparticles by Utilizing Double Emulsion Drops with a Sacrificial Thin Oil Shell (얇은 오일쉘 이중에멀젼을 이용한 고효율 단분산성 하이드로젤 마이크로 입자 생산)

  • Kim, Byeong-Jin;Jeong, Hye-Seon;Choi, Chang-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.139-144
    • /
    • 2022
  • This study reports a microfluidic approach to produce monodisperse hydrogel microparticles in a simple and highly efficient manner. Specifically, we produce double emulsion drops with a thin oil shell surrounding an aqueous prepolymer solution, which is solidified via UV-induced free radical polymerization. When they are dispersed in an aqueous solution, the oil shell is dewetted due to the absence of surfactants, resulting in production of highly uniform hydrogel microparticles (C.V.=1%). Results show that production of monodisperse hydrogel microparticles with controllable size and composition can be achieved with minimal use of oil unlike water-in-oil (w/o) single emulsion-based approach. Furthermore, in-depth study of flow patterns in microfluidic device using a phase diagram exhibits a crucial relationship among relative flow rates while providing windows of readily controllable parameters for reliable manufacturing of hydrogel microparticles.

Effect of Density Separation after Pretreatment on Embryo Growth and Radicle Emergence of Carrot(Daucus carota L.) Seeds (당근 종자의 전 처리후 비중선이 배생장과 발아에 미치는 영향)

  • 민태기
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.2
    • /
    • pp.134-140
    • /
    • 1992
  • Carrot(Daucus carota L.) seeds (CV Danver 126) were primed and then separated by density differences to improve both the percentage and time of radicle emergence. Seeds for priming were soaked in aerated distilled water for 2 days (water imbibed), 25% solution of polyethylene glycol(PEG) 6000 for 6 or 10 days, salt solution of 0.2M KNO$_3$+0.1M $K_2$HPO$_4$ for 6 or 10 days, or mixed with Agro-Lig with 90% moisture content for 6 days and 70% moisture content for 6 or 10 days (SMP) at 2$0^{\circ}C$, respectively. The greatest embryo growth and the highest radicle emergence were observed from the seeds treated SMP with 90% moisture content for 6 days among the primed treatments. After the SMP treatment, the seeds were separated into density classes with a float-sink procedure using aqueous solution of Maltrin 600 with 0.02/cm$^3$ density increments. The lower density classes of the carrot seeds, the more embryo growth, the higher and the faster rates of radicle emergence were exhibited in order from 1.06 to 1.14 density classes of the carrot seeds treated SMP.

  • PDF

Self-Assembled Polymeric Nanoparticles of Poly(ethylene glycol) Grafted Pullulan Acetate as a Novel Drug Carrier

  • Jung, Sun-Woong;Jeong, Young-Il;Kim, Young-Hoon;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.562-569
    • /
    • 2004
  • Self-assembling nanospheres of hydrophobized pullulan have been developed. Pullulan acetate (PA), as hydrophobized pullulan, was synthesized by acetylation. Carboxymethylated poly(ethylene-glycol) (CMPEG) was introduced into pullulan acetate (PA) through a coupling reaction using N, N'-dicyclohexyl carbodiimide (DCC). A synthesized PA-PEG-PA (abbreviated as PEP) conjugate was confirmed by Fourier transform-infrared (FT-IR) spectroscopy. Since PEP conjugates have amphiphilic characteristics in aqueous solution, polymeric nanoparticles of PEP conjugates were prepared using a simple dialysis method in water. From the analysis of fluorescence excitation spectra primarily, the critical association concentration (CAC) of this conjugate was found to be 0.0063 g/L. Observations by scanning electron microscopy (SEM) showed the spherical morphologies of the PEP nanoparticles. The particle size distribution of the PEP conjugates was determined using photon correlation spectroscopy (PCS) and the intensity-average particle size was 193.3 ${\pm}$ 13.53 nm with a unimodal distribution. Clonazepam (CNZ), as a model drug, was easy to entrap into polymeric nanoparticles of the PEP conjugates. The drug release behavior was mainly diffusion controlled from the core portion.

Targeted Drug Delivery Carriers Using Folate Conjugated Poly((R)-3-hydroxy butyrate)-Poly(ethylene glycol) Nanoparticles (Folate가 수식된 Poly((R)-3-hydroxy butyrate)-Poly(ethylene glycol) 나노입자를 이용한 표적지향형 약물전달체)

  • Kwon, Seung-Ho;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.515-519
    • /
    • 2009
  • Biodegradable poly((R)-3-hydroxy butyrate) and poly(ethylene glycol) was conjugated to make amphiphilic di-block copolymer. Folate was conjugated at di-block copolymer to target the cancer cells. Copolymer was ready to form the self-assembled micelle whose size was 125~156 nm in aqueous solution. Griseofulvin as a hydrophobic drug was loaded in nanoparticles. Their loading efficiencies were 35~56%. Hydrophobic drug was continuously released for 24 h. Cell viability test showed that folate attached particles were 10% more efficient than the particles without targeting ligands.

Poly(DL-Lactide-co-Glycolide) Nanoparticles Used PEG-PPG Diblock Copolymer by Surfactant: Preparation and Loading of Water Insoluble Drug (유화제로서 PEG-PPG 블록 공중합체를 이용한 Poly(DL-Lactide-co-Glycolide) 나노입자: 제조 및 지용성 약물의 로딩)

  • Taek Kyu Jung;Sung Soo Kim;Byung Cheol Shin
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.479-486
    • /
    • 2003
  • In this study, poly(DL-lactide-co-glycolide) nanoparticles loaded with water-insoluble vitamins such as vitamin A (Retinol) and vitamin E acetate were prepared by the emulsification diffusion method. Polymer solution was prepared by the two water-miscible organic solvent, such as ethanol and acetone. Because of its biocompatible property, polyethyleneglycol-polypropyleneglycol diblock copolymer was used as surfactant and stabilizer. The influence of some preparative variables on the nanoparticle formation and on the loading efficiency of active agents, such as the type and concentration of stabilizing agent, the stirring methods, the water/oil phase ratio and the polymer concentration were investigated in order to control and optimize the process. After preparation of nanoparticles loaded with active agent, particle size and distribution were evaluated by the light scattering particle analyzer. The loading efficiency of active agents was evaluated by the UV-visible spectroscopy. As the results, particle size were 50-200 nm and dispersibility was monodisperse. The optimum loading efficiency of active agents was observed 50-60%. It was found that the appropriate of selections of binary solvent mixtures and polymeric concentrations in both organic and aqueous phases could provide good yield and favorable physical properties of PLGA nanoparticles.

Analysis and Conservation of Wooden Objects from Buyeo Era of the Baekje Period (부여 백제시대 목제품의 재질분석과 보존)

  • Kim, Soochul;Oh, Jungae;Namkung, Seung;Lee, Kwanghee
    • Conservation Science in Museum
    • /
    • v.10
    • /
    • pp.43-61
    • /
    • 2009
  • The Buyeo National Museum was requested conservation treatment for wooden objects excavated from three Baekje archeological sites: Neungsan-ri, Ssangbuk-ri, and Gungnamji Pond. Prior to conservation treatment, analysis was conducted to identify the species used. The results of the analysis revealed wood from diverse species of trees including Hard pine, Cryptomeria japonica D. Don, Zelkova serrata Makino, Quercus spp., Platycarya strobilaceae S. et Z., Castanea spp., Torreya nucifera S. et Z., Taxus cuspidata S. et Z., and Salix spp. A high percentage of the objects were made of Cryptomeria japonica D. Don., a species native to Japan, which indicates that exchange with Japan was active at that time. Among the wooden objects, we analyzed lacquer fragments from six pieces of lacquerware, and the characteristics of the lacquer fragments were peculiar to specific artifacts. Most of the fragments were thicker than 100 ㎛. Pure lacquer and mixed black pigment were used. Infrared spectroscopy of the lacquered wooden fragments revealed that they had a very similar absorption band as refined lacquer, confirming that they were painted with lacquer. For their conservation, we immersed the objects in a high molecular weight aqueous solution of PEG#3,350 (10% → 50%) to strengthen them before vacuum freeze-drying.

Effect of surfactant on the micelle process for the pre-purification of paclitaxel (Paclitaxel 전처리를 위한 마이셀 공정에서의 계면활성제 영향)

  • Jeon, Keum-Young;Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.557-560
    • /
    • 2008
  • The micelle process was developed for pre-purifying paclitaxel from plant cell cultures of Taxus chinensis, giving a high purity and yield. The approach in this work was to transfer paclitaxel in the crude extract to an aqueous surfactant solution as a micelle, allowing organic solvents to be used for removal of lipids and non-polar impurities. In this work, the effects of various surfactants such as CPC, CTMAC, LTMAC, SDS, AOT, Tween, PEG, and Triton were examined on the yield, purity, and phase separation time in micelle process. Among these surfactants, CTMAC (5%, w/v) gave the best result in terms of paclitaxel yield (${\sim}99%$), purity (${\sim}21%$), and phase separation time (30 min). The use of micelles in the pre-purification process allows for rapid and efficient separation of paclitaxel from interfering compounds and dramatically increases the yield and purity of crude paclitaxel for subsequent purification steps.

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers

  • Bae, Hee Ho;Cho, Mi Young;Hong, Ji Hyeon;Poo, Haryoung;Sung, Moon-Hee;Lim, Yong Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1782-1789
    • /
    • 2012
  • We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.

Preparation and Characterization of Bovine Serum Albumin-loaded Cationic Liposomes: Effect of Hydration Phase

  • Park, Se-Jin;Jeong, Ui-Hyeon;Lee, Ji-Woo;Park, Jeong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.6
    • /
    • pp.353-356
    • /
    • 2010
  • Although liposomes have been applied as drug delivery systems in various fields, the usage was limited due to the low encapsulation efficiency compared to other carrier systems. Here, cationic liposomes were prepared by mixing 1,2-dioleoyl-3-trimethylammoniopropane (DOTAP) as a cationic lipid, 1,2-dioleoyl-sn-glycerol-phosphoethanolamine (DOPE) and cholesterol (CH), and the liposomes were hydrated by varying the aqueous phases such as phosphate-buffered saline (PBS), 5% dextrose, and 10% sucrose in order to improve the encapsulation efficiency of bovine serum albumin (BSA). The particle size and zeta potential were determined by dynamic light scattering method and in vitro release patterns were investigated by spectrophotometry. Particle size and zeta potential of liposomes were varied depending on the ratio of DOTAP/DOPE/CH in range of 270-350 nm and 0.8-9.7 mV, respectively. Moreover, the addition of polyethylene glycol (PEG) improved the encapsulation efficiency from 37% to 43% as well as reduced particle sizes of liposomes while the liposomes were hydrated in PBS. When the liposomes were hydrated with 10% sucrose, the encapsulation efficiency of BSA was higher than any other groups. Whereas PBS was used as hydration solution, lower encapsulation efficiency was obtained compared with other groups. More than 60% of BSA was released from the liposomes hydrated with 10% sucrose; thereafter another 20% of BSA was released. Therefore, release pattern of BSA from cationic liposomes was extended release in this study. From the results, cationic liposomes dispersed in 10% sucrose would be potential carrier with high encapsulation efficiency.