Browse > Article
http://dx.doi.org/10.4014/jmb.1208.08031

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers  

Bae, Hee Ho (Graduate School and Department of Analytical Science and Technology, Chungnam National University)
Cho, Mi Young (Graduate School and Department of Analytical Science and Technology, Chungnam National University)
Hong, Ji Hyeon (Graduate School and Department of Analytical Science and Technology, Chungnam National University)
Poo, Haryoung (Viral Infectious Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology)
Sung, Moon-Hee (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul and BioLeaders Corporation)
Lim, Yong Taik (Graduate School and Department of Analytical Science and Technology, Chungnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1782-1789 More about this Journal
Abstract
We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.
Keywords
Poly(${\gamma}$-glutamic acid); anticancer drugs; drug delivery; polymer nanogel;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Sasaki, Y. and K. Akiyoshi. 2010. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem. Rec. 10: 366-376.
2 Sasaki, Y. and K. Akiyoshi. 2012. Self-assembled nanogel engineering for advanced biomedical technology. Chem. Lett. 41: 202-208.   DOI   ScienceOn
3 Seo, S. B., J. Yang, W. Hyung, E. J. Cho, T. I. Lee, Y. J. Song, et al. 2007. Novel multifunctional PHDCA/PEI nano-drug carriers for simultaneous magnetically targeted cancer therapy and diagnosis via magnetic resonance imaging. Nanotechnology 18: 475105.   DOI   ScienceOn
4 Sweat, F. W. and W. W. Epstein. 1967. Dimethyl sulfoxide oxidations. J. Organic Chem. 32: 835-838.   DOI
5 Tsujimoto, T., J. Kimura, Y. Takeuchi, H. Uyama, C. Park, and M. H. Sung. 2010. Chelation of calcium ions by poly(gammaglutamic acid) from Bacillus subtilis (Chungkookjang). J. Microbiol. Biotechnol. 20: 1436-1439.   DOI   ScienceOn
6 Verheul, R. J., S. van der Wal, and W. E. Hennink. 2010. Tailorable thiolated trimethyl chitosans for covalently stabilized nanoparticles. Biomacromolecules 11: 1965-1971.   DOI   ScienceOn
7 Yang, J., J. Lee, J. Kang, K. Lee, J. S. Suh, H. G. Yoon, Y. M. Huh, and S. Haam. 2008. Hollow silica nanocontainers as drug delivery vehicles. Langmuir 24: 3417-3421.   DOI   ScienceOn
8 Yoo, H. S. and T. G. Park. 2001. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J. Control. Release 70: 63-70.   DOI   ScienceOn
9 Kim, E., Y. Jung, H. Choi, J. Yang, J. S. Suh, Y. M. Huh, K. Kim, and S. Haam. 2010. Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31: 4592-4599.   DOI   ScienceOn
10 Kim, H. M., H. Lee, K. S. Hong, M. Y. Cho, M. H. Sung, H. Poo, and Y. T. Lim. 2011. Synthesis and high performance of magnetofluorescent polyelectrolyte nanocomposites as mr/nearinfrared multimodal cellular imaging nanoprobes. ACS Nano 5: 8230-8240.   DOI   ScienceOn
11 Kommareddy, S. and M. Amiji. 2005. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug. Chem. 16: 1423-1432.   DOI   ScienceOn
12 Lee, D. E., H. Koo, I. C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon. 2012. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41: 2656-2672.   DOI   ScienceOn
13 Lee, E. H., Y. Kamigaito, T. Tsujimoto, S. Seki, H. Uyama, S. Tagawa, and M. H. Sung. 2010. Preparation of poly(gammaglutamic acid) hydrogel/apatite composites and their application for scaffold of cell proliferation. Sen-I Gakkaishi 66: 104-111.   DOI   ScienceOn
14 Lee, E. H., Y. Kamigaito, T. Tsujimoto, H. Uyama, and M. H. Sung. 2010. Synthesis of an amphiphilic poly(gamma-glutamic acid)-cholesterol conjugate and its application as an artificial chaperone. J. Microbiol. Biotechnol. 20: 1424-1429.   DOI   ScienceOn
15 Lee, E. H., T. Tsujimoto, H. Uyama, M. H. Sung, K. Kim, and S. Kuramitsu. 2010. Enhancement of enzyme activity and stability by poly(gamma-glutamic acid). Polym. J. 42: 818-822.   DOI
16 Lee, E. H., H. Uyama, O. H. Kwon, and M. H. Sung. 2009. Fabrication of ultrafine fibers of poly(gamma-glutamic acid) and its derivative by electrospinning. Polym. Bull. 63: 735-742.   DOI   ScienceOn
17 Lim, Y. T., Y. W. Noh, J. N. Kwon, and B. H. Chung. 2009. Multifunctional perfluorocarbon nanoemulsions for F-19-based magnetic resonance and near-infrared optical imaging of dendritic cells. Chem. Commun. 45: 6952-6954.
18 Mok, H., H. J. Kim, and T. G. Park. 2008. Dissolution of biomacromolecules in organic solvents by nano-complexing with poly(ethylene glycol). Int. J. Pharm. 356: 306-313.   DOI   ScienceOn
19 Lim, Y. T., S. M. Shim, Y. W. Noh, K. S. Lee, D. Y. Choi, H. Uyama, et al. 2011. Bioderived polyelectrolyte nanogels for robust antigen loading and vaccine adjuvant effects. Small 7: 3281-3286.   DOI   ScienceOn
20 McClements, D. J. 2012. Crystals and crystallization in oil-inwater emulsions: Implications for emulsion-based delivery systems. Adv. Colloid. Interfac. 174: 1-30.
21 Mok, H. and T. G. Park. 2006. PEG-assisted DNA solubilization in organic solvents for preparing cytosol specifically degradable PEG/DNA nanogels. Bioconjug. Chem. 17: 1369-1372.   DOI   ScienceOn
22 Noh, Y. W., H. S. Park, M. H. Sung, and Y. T. Lim. 2011. Enhancement of the photostability and retention time of indocyanine green in sentinel lymph node mapping by anionic polyelectrolytes. Biomaterials 32: 6551-6557.   DOI   ScienceOn
23 Anderson, M. E. 1998. Glutathione: An overview of biosynthesis and modulation. Chem. Biol. Interact. 112: 1-14.
24 Bae, K. H., H. Mok, and T. G. Park. 2008. Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Biomaterials 29: 3376-3383.   DOI   ScienceOn
25 Bae, S. R., C. Park, J. C. Choi, H. Poo, C. J. Kim, and M. H. Sung. 2010. Effects of ultra high molecular weight polygamma-glutamic acid from Bacillus subtilis (Chungkookjang) on corneal wound healing. J. Microbiol. Biotechnol. 20: 803-808.
26 Bernkop-Schnurch, A. 2005. Thiomers: A new generation of mucoadhesive polymers. Adv. Drug Deliver. Rev. 57: 1569-1582.   DOI   ScienceOn
27 Chung, K. H., M. Y. Cho, M. H. Sung, H. Poo, and Y. T. Lim. 2011. Electrostatically assembled biocompatible polymer nanoparticles for MR/optical dual-modality imaging nanoprobes. Chem. Commun. 47: 8889-8891.   DOI   ScienceOn
28 Bravo-Osuna, I., D. Teutonico, S. Arpicco, C. Vauthier, and G. Ponchel. 2007. Characterization of chitosan thiolation and application to thiol quantification onto nanoparticle surface. Int. J. Pharm. 340: 173-181.   DOI   ScienceOn
29 Cai, X. J., C. Y. Dong, H. Q. Dong, G. M. Wang, G. M. Pauletti, X. J. Pan, et al. 2012. Effective gene delivery using stimulus-responsive catiomer designed with redox-sensitive disulfide and acid-labile imine linkers. Biomacromolecules 13: 1024-1034.   DOI   ScienceOn
30 Chang, D., J. Lei, H. R. Cui, N. Lu, Y. J. Sun, X. H. Zhang, C. Gao, H. Zheng, and Y. H. Yin. 2012. Disulfide cross-linked nanospheres from sodium alginate derivative for inflammatory bowel disease: Preparation, characterization, and in vitro drug release behavior. Carbohyd. Polym. 88: 663-669.   DOI   ScienceOn
31 Chung, S. W., T. A. Hil-lal, and Y. Byun. 2012. Strategies for non-invasive delivery of biologics. J. Drug Target. 20: 481-501.   DOI   ScienceOn
32 Ferrari, M. 2005. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 5: 161-171.   DOI   ScienceOn
33 Hombach, J., T. F. Palmberger, and A. Bernkop-Schnurch. 2009. Development and in vitro evaluation of a mucoadhesive vaginal delivery system for nystatin. J. Pharm. Sci. 98: 555-564.   DOI   ScienceOn
34 Park, H. S., J. E. Lee, M. Y. Cho, Y. W. Noh, M. H. Sung, H. Poo, K. S. Hong, and Y. T. Lim. 2011. pH-stimuli-responsive near-infrared optical imaging nanoprobe based on poly(gammaglutamic acid)/poly(beta-amino ester) nanoparticles. Nanotechnology 22: 465603.   DOI   ScienceOn
35 Yoo, H. S. and T. G. Park. 2004. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release 96: 273-283.   DOI   ScienceOn
36 Zhao, M. X., A. Biswas, B. L. Hu, K. I. Joo, P. Wang, Z. Gu, and Y. Tang. 2011. Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials 32: 5223-5230.   DOI   ScienceOn
37 Zhao, P. X. and D. Astruc. 2012. Docetaxel nanotechnology in anticancer therapy. Chem. Med. Chem. 7: 952-972.
38 Oh, J. K., R. Drumright, D. J. Siegwart, and K. Matyjaszewski. 2008. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33: 448-477.   DOI   ScienceOn
39 Park, H., J. Yang, J. Lee, S. Haam, I. H. Choi, and K. H. Yoo. 2009. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3: 2919-2926.   DOI   ScienceOn
40 Park, J. H., J. C. Choi, M. H. Sung, J. H. Kang, and M. J. Chang. 2011. High molecular weight poly-gamma-glutamic acid regulates lipid metabolism in rats fed a high-fat diet and humans. J. Microbiol. Biotechnol. 21: 766-775.   DOI   ScienceOn
41 Park, K., S. Lee, E. Kang, K. Kim, K. Choi, and I. C. Kwon. 2009. New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv. Funct. Mater. 19: 1553-1566.   DOI   ScienceOn
42 Peppas, N. A., J. Z. Hilt, A. Khademhosseini, and R. Langer. 2006. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18: 1345-1360.   DOI   ScienceOn
43 Poo, H., H. M. Pyo, T. Y. Lee, S. W. Yoon, J. S. Lee, C. J. Kim, et al. 2006. Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int. J. Cancer 119: 1702-1709.   DOI   ScienceOn