• Title/Summary/Keyword: PECVD method

Search Result 204, Processing Time 0.032 seconds

BORIDING OF STEEL WITH PECVD METHOD

  • Lee, M.J.;Lee, K.Y.;Lee, J.H.;Kim, Y.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.249-252
    • /
    • 1999
  • Boriding is one of the chemical method to increase surface hardness as well as carburizing, and nitriding. Gas boriding and boron paste boriding methods were investigated to replace salt bath boriding. Boron paste boriding method is selected due to safety, small waste and low cost. And then boriding is also carried out micro-pulsed PECVD in order to increase efficiency of boriding. Mechanical properties, microstructure, surface concentration, and depth profile of borided layer is investigated by micro-vickers hardness tester, SEM, XRD, and AES.

  • PDF

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Bonding structure of the DLC films deposited by RE-PECVD (RE-PECVD법에 의해 증착된 DLC박막의 결합 특성)

  • 최봉근;신재혁;안종일;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • The diamond-like carbon (DLC) films were deposited on the Si (100) wafer by a rf-PECVD method as a function of the mixture rate of methane-hydrogen gas and bias voltage. The bonding structure and mechanical properties of these deposited DLC films were investigated using FT-IR, Raman, and nano-indenter. The deposition rates of DLC films increased with increased flow rate of methane in the gas mixtures and increased bias voltage. The $sp^3/sp^2$ bonding ratio of carbon in thin film and the hardness increased with increasing flow rate of hydrogen in the gas mixtures and increasing bias voltage.

Electrical Properties of Diamond-like Carbon Thin Film synthesized by PECVD (PECVD로 합성한 다이아몬드상 카본박막의 전기적 특성)

  • Choi, Won-Seok;Park, Mun-Gi;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.973-976
    • /
    • 2008
  • In addition to its similarity to genuine diamond film, diamond-like carbon (DLC) film has many advantages, including its wide band gap and variable refractive index. In this study, DLC films were prepared by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas. We examined the effects of the RF power on the electrical properties of the DLC films. The films were deposited at several RF powers ranging from 50 to 175 W in steps of 25 W. The leakage current of DLC films increased at higher deposition RF power. And the resistivities of DLC films grown at 50 W and 175 W were $5\times10^{11}$ ${\Omega}cm$ and $2.68\times10^{10}$ ${\Omega}cm$, respectively.

Microstructure and Characterization Depending on Process Parameter of SnO2 Thin Films Fabricated by PECVD Method (PECVD법에 의해 제조된 SnO2 박막의 공정변수에 따른 미세구조 및 특성)

  • Lee, Jeong-Hoon;Jang, Gun-Eik;Son, Sang-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.680-686
    • /
    • 2006
  • Tin oxide$(SnO_2)$ thin films were prepared on glass substrate by Plasma Enhanced Chemical Vapor Deposition (PECVD) method. $SnO_2$ thin films were prepared using gas mixture of dibutyltin diacetate as a precursor and oxygen as an oxidant at 275, 325, 375, $425^{\circ}C$, respectively as a function of deposition temperature. The XRD peaks corresponded to those of polycrystalline $SnO_2$, which is in the tetragonal system with a rutil-type structure. As the deposition temperature increased, the texture plane of $SnO_2$ changed from (200) plane to denser (211) and (110) planes. Lower deposition temperature and shorter deposition time led to decreasing surface roughness and electrical resistivity of the formed thin films at $325\sim425^{\circ}C$. The properties of $SnO_2$ films were critically affected by deposition temperature and time.

OES based PECVD Process Monitoring Accuracy Improvement by IR Background Signal Subtraction from Emission Signal (적외선 배경신호 처리를 통한 OES 기반 PECVD공정 모니터링 정확도 개선)

  • Lee, Jin Young;Seo, Seok Jun;Kim, Dae-Woong;Hur, Min;Lee, Jae-Ok;Kang, Woo Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2019
  • Optical emission spectroscopy is used to identify chemical species and monitor the changes of process results during the plasma process. However, plasma process monitoring or fault detection by using emission signal variation monitoring is vulnerable to background signal fluctuations. IR heaters are used in semiconductor manufacturing chambers where high temperature uniformity and fast response are required. During the process, the IR lamp output fluctuates to maintain a stable process temperature. This IR signal fluctuation reacts as a background signal fluctuation to the spectrometer. In this research, we evaluate the effect of infrared background signal fluctuation on plasma process monitoring and improve the plasma process monitoring accuracy by using simple infrared background signal subtraction method. The effect of infrared background signal fluctuation on plasma process monitoring was evaluated on $SiO_2$ PECVD process. Comparing the $SiO_2$ film thickness and the measured emission line intensity from the by-product molecules, the effect of infrared background signal on plasma process monitoring and the necessity of background signal subtraction method were confirmed.