• Title/Summary/Keyword: PECVD $SiO_x$

Search Result 64, Processing Time 0.024 seconds

Optical Properties and Structural Analysis of SiO2 Thick Films Deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 증착된 SiO2 후막의 광학적 성질 및 구조적 분석)

  • Cho, Sung-Min;Kim, Yong-Tak;Seo, Yong-Gon;Yoon, Hyung-Do;Im, Young-Min;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.479-483
    • /
    • 2002
  • Silicon dioxide thick film using silica optical waveguide cladding was fabricated by Plasma Enhanced Chemical Vapor Deposition(PECVD) method, at a low temperature ($320^{\circ}$C) and from $(SiH_4+N_2O)$ gas mixtures. The effects of deposition parameters on properties of $SiO_2$ thick films were investigated by variation of $N_2O/SiH_4$ flow ratio and RF power. After the deposition process, the samples were annealed in a furnace at $1150^{\circ}$C, in N2 atmosphere, for 2h. As the $N_2O/SiH_4$ flow ratio increased, deposition rate decreased from 9.4 to 2.9 ${\mu}m/h$. As the RF power increased, deposition rate increased from 4.7 to 6.9 ${\mu}m/h$. The thickness and the refractive index measurements were measured by prism coupler. X-ray Photoelectron Spectroscopy(XPS) and Fourier Transform-infrared Spectroscopy(FT-IR) were used to determine the chemical states. The cross-section of films was observed by Scanning Electron Microscopy(SEM).

Formation of SiOF Thin Films by FTES/$O_2$-PECVD Method (FTES/$O_2$-PECVD 방법에 의한 SiOF 박막형성)

  • Kim, Duk-Soo;Lee, Ji-Hyeok;Lee, Kwang-Man;Gang, Dong-Sik;Choe, Chi-Kyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.825-830
    • /
    • 1999
  • Characteristics of SiOF films deposited by a FTES/$O_2$-plasma enhanced chemical vapor deposition method have been investigated using Fourier transform infrared spectroscopy, X-ray photoelectro spectroscopy, and ellipsometry. Electrical properties such as dielectric constant, dielectric breakdown and leakage current density are investigated using C-V and I-V measurements with MIS(Au/SiOF/p-Si) capacitor structure. Stepcoverage of the films have been also characterized using scanning electron microscopy and ellipsometry. A high quality SiOF film was formed on that the flow rates of FTES and $O_2$were 300sccm, respectively. The dielectric constant of the deposited SiOF film was about 3.1. This value is lower than that of the oxide films obtained using other method. The dielectric breakdown field and leakage current are more than 10MV/cm and about $8[\times}10^{9}A/\textrm{cm}^2$, respectively. The deposited SiOF film with thickness as $2500{\AA}$ on the $0.3{\mu}{\textrm}{m}$ metal pattern shows a high step-coverage without a void.

  • PDF

Structural Characteristics of $SnO_2$ Thin Films prepared by PECVD (PECVD로 제조한 $SnO_2$ 박막의 구조적 특성)

  • Lee, Jeong-Hoon;Jang, Gun-Eik;Son, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.250-251
    • /
    • 2005
  • Tin dioxide (SnO$_2$) thin films have been prepared on Si wafer (100) by Plasma Enhanced Chemical Vapor Deposition (PECVD). SnO$_2$ thin films were prepared from mixtures of dibutyltin diacetate as a precursor, oxygen as an oxidant at 275, 325, 375, 425$^{\circ}C$, respectively. The microstructure of deposited films was characterized by X-ray diffraction and field emission scanning electron microscopy. Structural characteristics of prepared SnO$_2$ thin films were investigated with different substrate temperature. The deposition rate was linearly increased with substrate temperature. Surface morphology and uniformity of prepared thin film was excellent at 375$^{\circ}C$ and grain size was averagely 25nm.

  • PDF

Anti-Reflective Coating with Hydrophilic/Abraion-Resistant Properties using TiO2/SiOxCy Double-Layer Thin Film (TiO2/SiOxCy 이중 박막을 이용한 투명 친수성/내마모성 반사방지 코팅)

  • Lee, Sung-jun;Lee, Min-kyo;Park, Young-chun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.345-351
    • /
    • 2017
  • A double-layered anti-reflective coating with hydrophilic/abrasion-resistant properties was studied using anatase titanium dioxide($TiO_2$) and silicon oxycarbide($SiO_xC_y$) thin film. $TiO_2$ and $SiO_xC_y$ thin films were sequentially deposited on a glass substrate by DC sputtering and PECVD, respectively. The optical properties were measured by UV-Vis-NIR spectrophotometer. The abrasion-resistance and the hydrophilicity were observed by a taber abrasion tester and a contact angle analyzer, respectively. The $TiO_2/SiO_xC_y$ double-layer thin film had an average transmittance of 91.3%, which was improved by 10% in the visible light region (400 to 800 nm) than that of the $TiO_2$ single-layer thin film. The contact angle of $TiO_2/SiO_xC_y$ film was $6.9^{\circ}$ right after UV exposure. After 9 days from the exposure, the contact angle was $10.2^{\circ}$, which was $33^{\circ}$ lower than that of the $TiO_2$ single-layer film. By the abrasion test, $SiO_xC_y$ film showed a superior abrasion-resistance to the $TiO_2$ film. Consequently, the $TiO_2/SiO_xC_y$ double-layer film has achieved superior anti-reflection, hydrophilicity, and abrasion resistance over the $TiO_2$ or $SiO_xC_y$ single-layer film.

Refractive Index Control of Silicon Oxynitride Thick Films on Core Layer of Silica Optical Waveguide (실리카 광도파로의 Core층인 Silicon Oxynitride후박의 굴절률 제어)

  • 김용탁;조성민;윤석규;서용곤;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.594-597
    • /
    • 2002
  • Silicon Oxynitride(SiON) thick films on p-type silicon(100) wafers have obtained by using plasma-enhanced chemical vapor deposition from SiH$_4$ , N$_2$O and N$_2$. Prism coupler measurements show that the refractive indices of SiON layers range from 1.4620 to 1.5312. A high deposition power of 180 W leads to deposition rates of up to 5.92${\mu}$m/h. The influence of the deposition condition on the chemical composition was investigated using X-ray photoelectron spectroscopy. After deposition of the SiON thick films, the films were annealed at 1050$^{\circ}C$ in a nitrogen atmosphere for 2 h to remove absorption band near 1.5${\mu}$m.

Optical Properties of Silicon Oxide (SiOx, x<2) Thin Films Deposited by PECVD Technique (PECVD 방법으로 증착한 SiOx(x<2) 박막의 광학적 특성 규명)

  • Kim, Youngill;Park, Byoung Youl;Kim, Eunkyeom;Han, Munsup;Sok, Junghyun;Park, Kyoungwan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.732-738
    • /
    • 2011
  • Silicon oxide thin films were deposited by using a plasma-enhanced chemical-vapor deposition technique to investigate the light emission properties. The photoluminescence characteristics were divided into two categories along the relative ratio of the flow rates of $SiH_4$ and $N_2O$ source gases, which show light emission in the broad/visible range and a light emission peak at 380 nm. We attribute the broad/visible light emission and the light emission peak to the quantum confinement effect of nanocrystalline silicon and the Si=O defects, respectively. Changes in the photoluminescence spectra were observed after the post-annealing processes. The photoluminescence spectra of the broad light emission in the visible range shifted to the long wavelength and were saturated above an annealing temperature of $900^{\circ}C$ or after 1 hour annealing at $970^{\circ}C$. However, the position of the light emission peak at 380 nm did not change at all after the post-annealing processes. The light emission intensities at 380 nm initially increased, and decreased at annealing temperatures above $700^{\circ}C$ or after 1 hour annealing at $700^{\circ}C$. The photoluminescence behaviors after the annealing processes can be explained bythe size change of the nanocrystalline silicon and the density change of Si=O defect in the films, respectively. These results support the possibility of using a silicon-based light source for Si-optoelectronic integrated circuits and/or display devices.

Ultra Thin Film Encapsulation of Organic Light Emitting Diode on a Plastic Substrate

  • Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Lee, Jeong-Ik;Yang, Yong-Suk;Chu, Hye-Yong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.545-550
    • /
    • 2005
  • We have carried out the fabrications of a barrier layer on a polyethersulfon (PES) film and organic light emitting diode (OLED) based on a plastic substrate by means of atomic layer deposition (ALD). Simultaneous deposition of 30 nm $AlO_x$ film on both sides of the PES film gave a water vapor transition rate (WVTR) of $0.062 g/m^2/day (@38^{\circ}C,\;100%\;R.H.)$. Further, the double layer of 200 nm $SiN_x$ film deposited by plasma enhanced chemical vapor deposition (PECVD) and 20 nm $AlO_x$ film by ALD resulted in a WVTR value lower than the detection limit of MOCON. We have investigated the OLED encapsulation performance of the double layer using the OLED structure of ITO / MTDATA (20 nm) / NPD (40 nm) / AlQ (60 nm) / LiF (1 nm) / Al (75 nm) on a plastic substrate. The preliminary life time to reach 91% of the initial luminance $(1300 cd/m^2)$ was 260 hours for the OLED encapsulated with 100 nm of PECVD-deposited $SiN_x$ and 30 nm of ALD-deposited $AlO_x$.

  • PDF

Ultra Thin Film Encapsulation of OLED on Plastic Substrate

  • Ko Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Yang, Yong-Suk;Lee, Jeong-Ik;Chu, Hye-Yong
    • Journal of Information Display
    • /
    • v.5 no.3
    • /
    • pp.30-34
    • /
    • 2004
  • Fabrications of barrier layer on a polyethersulfon (PES) film and OLED based on a plastic substrate by atomic layer deposition (ALD) have been carried out. Simultaneous deposition of 30 nm of $AlO_x$ film on both sides of PES film gave film MOCON value of 0.0615 g/$m^2$/day (@38$^{\circ}C$, 100 % R.H.). Moreover, the double layer of 200 urn $SiN_x$ film deposited by PECVD and 20 nm of $AlO_x$ film by ALD resulted in the MOCON value lower than the detection limit of MOCON. The OLED encapsulation performance of the double layer have been investigated using the OLED structure of ITO/MTDATA(20 nm)/NPD(40 nm)/AlQ(60 nm)/LiF(1 nm)/Al(75 nm) based on the plastic substrate. Preliminary life time to 91 % of initial luminance (1300 cd/$m^2$) was 260 hours for the OLED encapsulated with 100 nm of PECVD deposited $SiN_x$/30 nm of ALD deposited $AlO_x$.

유연성 소자 적용을 위한 $SiO_x$ 보호막의 특성 평가

  • Jeong, Yu-Jeong;Jeong, Jae-Hye;Yun, Jeong-Heum;Lee, Seong-Hun;Lee, Geon-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.452-452
    • /
    • 2010
  • 차세대 디스플레이로서 주목 받고 있는 유연성 정보표시 소자 개발에 대한 요구도가 날로 증대되고 있다. 유연성 정보표시 소자로서 플라스틱 기반 유연성 소자가 특히 주목 받고 있으나, 이의 실용화를 위해서는 플라스틱 기판에 적용 가능한 보호막 형성 기술 개발이 선행되어야 한다. 플라스틱 필름의 경우 높은 산소 및 수분 투과율 때문에 유연성 디스플레이의 응용에 걸림돌이 되고 있다. 플라스틱 기반 유연성 소자의 장수명화를 위해서는 수분과 산소의 투과를 방지하는 passivation layer 형성 기술이 필수적으로 요구된다. 본 연구에서는, polyethylene terephethalate (PET) 기판상에 증착된 $SiO_x$ 보호막의 합성에 있어서 중간층 유무에 따른 투습특성의 변화를 살펴보았다. 기화된 HMDSO (Hexamethyldisiloxane)와 Ar 및 $O_2$ 혼합기체를 이용하여 PECVD 방법으로 $SiO_x$ 박막을 합성하였다. 15 nm 두께의 $Al_2O_3$를 중간층으로 사용하여 중간층 유무에 따른 초기성장 거동 변화가 $SiO_x$ 박막의 투습 특성에 미치는 영향을 조사하였다. $SiO_x$ 박막 구조와 화학적 조성은 각각 FE-SEM과 FT-IR을 이용하여 분석하였으며, AFM을 이용하여 $SiO_x$ 박막 표면 미세 형상을 관찰하였다. 투습률은 MOCON사(社)의 Permatran-W 3/33 MA을 이용하여 측정하였다. 그리고 반복 굽힘 시험기를 이용하여 $SiO_x$ 보호막의 동적 투습 특성을 조사하였다. $Al_2O_3$ 중간층 유무에 따라 $SiO_x$ 박막의 투습률 (WVTR; water vapor transmission rate)은 ${\sim}10^{-1}g/m^2/day$(300 nm-thick $SiO_x$/PET)에서 ${\sim}5{\times}10^{-3}g/m^2/day$(300 nm-thick $SiO_x$/15 nm-thick $Al_2O_3$/PET)으로 변화하였다. 300 nm-thick $SiO_x$/15 nm-thick $Al_2O_3$/PET 시편의 경우 곡지름 50 mm에서 1,000회 반복 굽힘 후에도 투습률 변화를 보이지 않았다. 이와 같은 $SiO_x$ 박막의 투습 특성 변화는 $Al_2O_3$ 중간층 유무에 따른 초기 성장 거동의 변화로 해석된다. FE-SEM 및 AFM 표면 미세 구조 관찰을 통한 초기 성장 거동 변화 조사 결과, $Al_2O_3$ 중간층 없이 PET 기판위에 $SiO_x$ 박막 증착한 경우 3 차원 성장을 하는 반면, PET기판위에 $Al_2O_3$ 중간층 형성 후 $SiO_x$ 박막 증착하는 경우 2 차원 성장을 하게 됨을 관찰하였다. 따라서 본 연구를 통하여, 플라스틱 기반 유연성 표시 소자에 적용하기 위한 $SiO_x$ 보호막 합성 에 있어서 초기 성장 거동의 변화가 투습 특성에 민감한 영향을 미침을 알 수 있었다.

  • PDF