Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.9.732

Optical Properties of Silicon Oxide (SiOx, x<2) Thin Films Deposited by PECVD Technique  

Kim, Youngill (Department of Nano Science and Technology, University of Seoul)
Park, Byoung Youl (Department of Nano Science and Technology, University of Seoul)
Kim, Eunkyeom (Department of Nano Engineering, University of Seoul)
Han, Munsup (Department of Physics, University of Seoul)
Sok, Junghyun (Department of Nano Science and Technology, University of Seoul)
Park, Kyoungwan (Department of Nano Science and Technology, University of Seoul)
Publication Information
Korean Journal of Metals and Materials / v.49, no.9, 2011 , pp. 732-738 More about this Journal
Abstract
Silicon oxide thin films were deposited by using a plasma-enhanced chemical-vapor deposition technique to investigate the light emission properties. The photoluminescence characteristics were divided into two categories along the relative ratio of the flow rates of $SiH_4$ and $N_2O$ source gases, which show light emission in the broad/visible range and a light emission peak at 380 nm. We attribute the broad/visible light emission and the light emission peak to the quantum confinement effect of nanocrystalline silicon and the Si=O defects, respectively. Changes in the photoluminescence spectra were observed after the post-annealing processes. The photoluminescence spectra of the broad light emission in the visible range shifted to the long wavelength and were saturated above an annealing temperature of $900^{\circ}C$ or after 1 hour annealing at $970^{\circ}C$. However, the position of the light emission peak at 380 nm did not change at all after the post-annealing processes. The light emission intensities at 380 nm initially increased, and decreased at annealing temperatures above $700^{\circ}C$ or after 1 hour annealing at $700^{\circ}C$. The photoluminescence behaviors after the annealing processes can be explained bythe size change of the nanocrystalline silicon and the density change of Si=O defect in the films, respectively. These results support the possibility of using a silicon-based light source for Si-optoelectronic integrated circuits and/or display devices.
Keywords
oxides; plasma deposition; optical properties; atomic force microscopy; photoluminescence;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 L. Pavesi, J. Phys.: Condens. Matter 15, R1169 (2003).   DOI   ScienceOn
2 D. A. B. Miller, Proc. IEEE 88, 728 (2000).   DOI
3 D. J. Lockwood, Light Emission in Silicon: From Physics to Devices, (Academic Press, San Diego, 1997), Chapter 1.
4 L. T. Canham, Nature (London) 408, 411 (2000).   DOI   ScienceOn
5 L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature (London) 408, 440 (2000).   DOI   ScienceOn
6 G. Davies, Phys. Rev. 176, 83 (1989).
7 H. Z. Song, X. M. Bao, N. S. Li, and J. Y. Zhang, J. Appl. Phys. 82, 4028 (1997).   DOI   ScienceOn
8 J. F. Tong, H. L. Hsiao, and H. L. Hwang, Appl. Phys. Lett. 74, 2316 (1999).   DOI   ScienceOn
9 P. Steiner, F. Kozlowski, and W. Lang, Appl. Phys. Lett. 62, 2700 (1993).   DOI   ScienceOn
10 J. Linnros and N. Lalic, Appl. Phys. Lett. 66, 3048 (1995).   DOI   ScienceOn
11 K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, Nature (London) 384, 338 (1996).   DOI   ScienceOn
12 P. Knapek, B. Rezek, D. Muller, J. J. Grob, R. Levy, K. Luterova, J. Kocka, and I. Pelant, Phys. Stat. Sol. A 167, R5 (1998).   DOI   ScienceOn
13 L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).   DOI
14 N. M. Park, S. H. Kim, G. Y. Sung, S. H. Choi, and S. J. Park, J. Kor. Phys. Soc. 42, S361 (2003).
15 T. Y. Kim, N. M Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong, and C. J. Choi, Appl. Phys. Lett. 85, 5355 (2004).   DOI   ScienceOn
16 K. S. Cho, N. M Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, Appl. Phys. Lett. 86, 071909 (2005).   DOI   ScienceOn
17 M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater, Appl. Phys. Lett. 72, 2577 (1998).   DOI   ScienceOn
18 F. Iacona, G. Franzo, and C. Spinella, J. Appl. Phys. 87, 1295 (2000).   DOI   ScienceOn
19 A. Irrera, D. Pacifici, M. Miritello, G. Franzo, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, Appl. Phys. Lett. 81, 1866 (2002).   DOI   ScienceOn
20 F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, J. Appl. Phys. 95, 3723 (2004).   DOI   ScienceOn
21 K. Murayama, T. Toyama, S. Miyazaki, and M. Hirose, Solid State Commun. 104, 119 (1997).   DOI   ScienceOn
22 Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, Nature 378, 258 (1995).   DOI   ScienceOn
23 D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, Phys. Rev. Lett. 76, 539 (1996).   DOI   ScienceOn
24 O. Jambois, H. Rinnert, X. Devaux, and M. Vergnat, J. Appl. Phys. 98, 046105 (2005).   DOI   ScienceOn
25 N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, Phys. Rev. Lett. 86, 1355 (2001).   DOI   ScienceOn
26 V. Lehmann and U. Gosele, Appl. Phys. Lett. 58, 856 (1991).   DOI
27 G. Allan, C. Delerue, and M. Lannoo, Phys. Rev. Lett. 78, 3161 (1977).
28 B. Delley and E. F. Steigmeier, Appl. Phys. Lett. 67, 2370 (1995).   DOI   ScienceOn
29 C. Ko, J. Joo, M. Han, B. Y. Park, J. H. Sok, and K. Park, J. Korean Phys. Soc. 48, 1277 (2006).
30 M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, Appl. Phys. Lett. 90, 131903 (2007).   DOI   ScienceOn
31 S. Fujita and A. Sasaki, J. Electrochem. Soc. 132, 398 (1985).   DOI   ScienceOn
32 W. L. Warren, P. M. Lenahan, and S. E. Curry, Phys. Rev. Lett. 65, 207 (1990).   DOI   ScienceOn
33 T. Shimizu, J. Non-Cryst. Solids. 59, 117 (1983).
34 F. Iacona, G. Franzo, and C. Spinella, J. Appl. Phys. 87, 1295 (2000).   DOI   ScienceOn
35 C.-F. Lin, W.-T. Tseng, and M. S. Feng, J. Appl. Phys. 87, 2808 (2000).   DOI   ScienceOn
36 E. Holzenkampfer, F.-W. Richter, J. Stuke, and U. Voget- Grote, J. Non-Cryst. Solids. 32, 327 (1979).   DOI   ScienceOn
37 M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater, Appl. Phys. Lett. 72, 2577 (1998).   DOI   ScienceOn
38 N. M. Park, S. H. Kim, G. Y. Sung, S.-H. Choi, and S.-J. Park J. Kor. Phys. Soc. 42, s361 (2003).
39 X. Yang, X. L. Wu, S. H. Li, H. Li T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, Appl. Phys. Lett. 86, 201906 (2005).   DOI   ScienceOn
40 S. H. Choi, R. G. Elliman, S. Cheylan, and J. P. D. Martin, Appl. Phys. Lett. 76, 2062 (2000).   DOI   ScienceOn