Formation of SiOF Thin Films by FTES/$O_2$-PECVD Method

FTES/$O_2$-PECVD 방법에 의한 SiOF 박막형성

  • Published : 1999.08.01

Abstract

Characteristics of SiOF films deposited by a FTES/$O_2$-plasma enhanced chemical vapor deposition method have been investigated using Fourier transform infrared spectroscopy, X-ray photoelectro spectroscopy, and ellipsometry. Electrical properties such as dielectric constant, dielectric breakdown and leakage current density are investigated using C-V and I-V measurements with MIS(Au/SiOF/p-Si) capacitor structure. Stepcoverage of the films have been also characterized using scanning electron microscopy and ellipsometry. A high quality SiOF film was formed on that the flow rates of FTES and $O_2$were 300sccm, respectively. The dielectric constant of the deposited SiOF film was about 3.1. This value is lower than that of the oxide films obtained using other method. The dielectric breakdown field and leakage current are more than 10MV/cm and about $8[\times}10^{9}A/\textrm{cm}^2$, respectively. The deposited SiOF film with thickness as $2500{\AA}$ on the $0.3{\mu}{\textrm}{m}$ metal pattern shows a high step-coverage without a void.

FTES/$O_2$-PECVD 방법에 의하여 증착된 SiOF 박막의 특성을 FT-IR, SPS, 그리고 ellipsometry로 분석하였다. 유전상수, breakdown field와 누설전류 밀도는 MIS(Au/SiOF/p-Si) 구조로 형성하여 C-V와 I-V특성곡선으로부터 측정하였다. SiOF박막의 step-coverage는 SEM 단면사진으로 조사하였다. FTES와 $O_2$의 유량을 각각 300sccm으로 반응로에 주입하였을 때 양질의 SiOF 박막이 형성되었다. 형성된 박막의 유전상수는 3.1로서 다른 산화막보다 더 낮은 값으로 나타났다. breakdown field와 누설전류밀도는 약 10MV/cm와 $8{\times}10^{9}A/\textrm{cm}^2$로 측정되었다. $0.3{\mu}{\textrm}{m}$ 금속 패턴에 $2500{\AA}$의 두께로 증착된 SiOF 박막은 전극간에 void가 없이 우수한 덮힘을 보였다.

Keywords

References

  1. Thin Solid Films v.235 T.Homma;Y.Kutsuzawa;K.Kuminune;Y.Murao
  2. Semiconductor International v.71 R.K.Laxman
  3. Solid State Technol. v.38 N.H.Hendricks
  4. J. Polym. Sci. Part A: Polym. Chem. v.34 A.K.Tasaka;U.Yoshiharu;I.Minoru
  5. J. Vac. Sci. Technol. A v.13 M.Hore
  6. J. Electron Mater. v.23 C.C.Cho;R.M.Wallace;L.A.Files-Sesler
  7. Appl. Phys. Lett. v.68 J.H.Kim;S.H.Seo;S.M.Yun;H.Y.Chang;K.M.Lee;C.K.Choi
  8. J. Electrochem. Soc. v.145 S.M.Y.H.Y.Chang;K.M.Lee;D.C.Kim;C.K.Choi
  9. J. Electrochem. Soc. v.140 T.Homma;R.Yamaguchi;Y.Murao
  10. Jpn. J. Appl. Phys. v.33 T.Usami;K.Shimokawa;M.Yoshimaru
  11. Appl. Phys. Lett. v.68 S.Lim;Y.Shimogake;Y.Nakano;K.Tada;H.Komiyama
  12. Electrochem. Soc. v.141 C.Yeh;C.Chen;G.Lin
  13. J. Vac. Soc. Technol. v.10 S.Gorbatkin;L.Berry
  14. J. Vac. Soc. Technol. v.13 K.Seaward;J.Turner;K.Nauka;A.Nel
  15. J. Vac.Soc. Technol. v.B5 G.Lucovsky;M.J.Maniti;J.K.Srivastava;E.A.Irene
  16. Appl. Phys. Lett. v.69 D.S.Kim;Y.H.Lee;N.H.Park