• Title/Summary/Keyword: PE-GOX 추진제

Search Result 15, Processing Time 0.022 seconds

Performance Analysis of PE-GOX Hybrid Rocket Motor Part I : Regression Rate Characteristics (PE-GOX 하이브리드 로켓 모터의 성능 예측 Part I : 후퇴율 특성)

  • Youn, Chang-Jin;Song, Na-Young;Yoo, Woo-Jun;Jeon, Chang-Soo;Kim, Jin-Kon;Sung, Hong-Gae;Moon, Hee-Jang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.71-78
    • /
    • 2007
  • An experimental investigation was conducted to clarify the combustion characteristics of Polyethylene-GOX(PE-GOX) hybrid motor using a single-port fuel grain configuration. Data from the experiments were analyzed to evaluate the length-averaged regression rate of PE-GOX propellants. Based on the existing theories, the empirical regression rate formulas provided from Marxman[3,4] and Altman[14] showed good concordance with the PE-GOX experiments. The accuracy of the regression rate was then evaluated and compared with the measured one. As a result, Marxman's model was somewhat more precise than Altman's model in these experiments. Moreover, the consideration of the empirical regression rate showed that O/F ratio has minor variation due to the quasi constant inflow of the fuel during motor firing.

Study on Combustion Characteristic of GOx/PE Hybrid Rocket According to Port Diameter (GOx/PE 하이브리드 로켓의 포트 직경에 따른 연소특성 연구)

  • Choi, Jae-Sung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.692-693
    • /
    • 2010
  • In this study, we analyze the combustion characteristic of GOx/PE hybrid rocket, by changing port diameter of the propellant. To study combustion characteristics of hybrid rocket, GOx is used for oxidizer and PolyEthylene is used for solid propellant. Regression rate and O/F ratio of the rocket is measured and presented.

  • PDF

Performance Prediction Methods and Combustion Characteristics of PE-GOX Hybrid Rocket Motor : Part I, Combustion Characteristics (PE-GOX 하이브리드 모터의 연소특성 및 성능 예측 기법 : Part I, 연소 특성)

  • Yoon, Chang-Jin;Song, Na-Yong;You, Woo-Jun;Moon, Hee-Jang;Kim, Jin-Kon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.267-270
    • /
    • 2006
  • An experimental investigation was conducted to study the combustion characteristics of Polyethylene-GOX hybrid motor. Several regression-rate models based on the length average were compared with the experiment data, postulating to treat the mass-addition rate of fuel almost constant to the mass rate of oxidize flowing into combustor.

  • PDF

Combustion Characteristics and Performance Prediction of PE-GOX Hybrid Rocket Motor Part II : Internal Ballistic Performance (PE-GOX 하이브리드 모터의 연소특성 및 성능 예측 기법 Part II : 내탄도 성능)

  • Yoon, Chang-Jin;Song, Na-Young;Yoo, Woo-Jun;Jeon, Chang-Soo;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • An internal ballistic model to predict the performance of a Polyethylene-GOX (PE-GOX) hybrid motor was proposed and evaluated. A theoretical treatment of the model was followed by detail discussion of each of the factors affecting the overall performance. The present model consists of the governing equations by considering the unsteady burn-back rate of the fuel grain and on-off response characteristics of a oxygen-supply valve. The numerical results using the 4th order Runge-Kutta scheme with temporal physicochemical properties showed good agreements with test results and the global effects of the performance parameters, such as the burning area of the fuel grain, O/F ratio, and etc., on the performance of the motor were analyzed.

A Study on Combustion Characteristic with Port-Diameter of fuel in Hybrid Rocket (하이브리드 로켓에서의 연료포트 직경에 따른 연소특성에 관한 연구)

  • Lee, Jung-Pyo;Cho, Jung-Tae;Kim, Gi-Hun;Kim, Soo-Jong;Kim, Hak-Chul;Woo, Kyoung-Jin;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.239-242
    • /
    • 2008
  • Combustion Characteristic with initial port-diameter of fuel was studied in hybrid propulsion system using cylindrical single port-grain. In order to understand a variation of combustion characteristic with initial port-diameter, experimental studies were performed with the GOX and $GN_2O$ as oxidizer, and PE as fuel. As results, burning rate decreased with increase of initial port-diameter of fuel. And the variation of burning rate with using $GN_2O$ is smaller than using GOX.

  • PDF

Performance Prediction Methods and Combustion Characteristics of PE-GOX Hybrid Rocket Motor : Part II, Performance Prediction Method (PE-GOX 하이브리드 모터의 연소특성 및 성능 예측 기법 : Part II, 성능 예측 기법)

  • Yoon, Chang-Jin;Song, Na-Young;You, Woo-Jun;Moon, Hee-Jang;Kim, Jin-Kon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.271-274
    • /
    • 2006
  • In order to predict the performance of the small-scale Polyethylene-GOX hybrid rocket motor, a typical internal ballistic model was proposed. The model adopted for the present study employed the lumped scale of chamber pressure so that the pressure-time history resulted from the present model was comparable to the test results.

  • PDF

Merge Characteristic of PMMA Multi-port Hybrid Rocket (PMMA 연료를 적용한 Multi-Port 하이브리드 로켓의 포트 병합특성에 관한 연구)

  • Park, Su-Hyang;Kim, Gi-Hun;Lee, Jung-Pyo;Cho, Jung-Tae;Kim, Soo-Jong;Kim, Hak-Chul;Woo, Kyong-Jin;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.247-250
    • /
    • 2008
  • An experimental investigation was conducted to clarify the combustion characteristics and merge characteristics of PMMA-GOX and PE-GOX hybrid motor using multi-port fuel grain configuration. The regression rate of multi-port fuel grain is higher than the regression rate of single-port fuel grain by thermal conduction and chamber pressure. The merge of multi-port has an effect on hybrid rocket performance by change of a combustion area.

  • PDF

Comparison of Combustion Characteristic with GN2O and GOX as Oxidizer in Hybrid Rocket (하이브리드 로켓의 산화제 종류에 따른 고체연료 연소특성 비교)

  • Lee, Jung-Pyo;Cho, Sung-Bong;Kim, Soo-Jong;Yoon, Sang-Kyu;Park, Su-Hayng;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.223-227
    • /
    • 2006
  • In this study, the combustion characteristics was studied with various oxidizer in hybrid propulsion system. In this experiments $GN_2O$ and GOX were used as oxidizer, and PE was used as fuel. The combustion behavior was explained by flame temperature with mass O/F ratio, and the use of $GN_2O$ as the oxidizer caused a increase in combustion efficiency with GOX in the same hybrid motor. The mass flow rate of gaseous oxidizer was controlled by the several chocked orifices that have different diameter, and the oxidizer supply range was $0.0138{\sim}0.0427kg/sec$. As result, the empirical relation for oxidizer type was represented by mass flux of solid fuel, it was obtained with mass transfer number, and mass flux of oxidizer.

  • PDF

A Study on Combustion Characteristic of HTPB in Hybrid Rocket (하이브리드 로켓의 HTPB의 연소특성에 관한 연구)

  • Lee, Jung-Pyo;Cho, Sung-Bong;Kim, Soo-Jong;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gae;Choi, Sung-Han;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.203-207
    • /
    • 2007
  • In this study, the combustion characteristics of HTPB was studied in hybrid propulsion system. In this experiments HTPB was used as fuel, GOX was used as oxidizer. The mass flow rate of GOX was controlled by the several chocked orifices that have different diameter, and the oxidizer supply range was $13.8{\sim}42.7g/sec$. The experimental result of HTPB was compared with the other studies of HTPB, and the combustion performance of HTPB was analyzed with that of PE. As a result, the homing rate and efficiency of HTPB as fuel were better than that of PE in the same hybrid motor.

  • PDF

A Study on the Combustion Characteristic in End-Burning Hybrid Propulsion System using $GN_2O$/PE ($GN_2O$/PE를 사용한 End-Burning 하이브리드 추진 시스템의 연소 특성 연구)

  • Woo, Kyoung-Jin;Moon, Keun-Hwan;Oh, Ji-Sung;Lee, Jung-Pyo;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.484-488
    • /
    • 2010
  • In this study, combustion experiments of the End-Burning Hybrid Propulsion System using $GN_2O$(Gas Nitrous oxide)/HDPE were performed and the results were compared to those of the combustion experiments using GOX/HDPE. The regression rate of the solid fuel using $GN_2O$ is lower than that of the solid fuel using GOX since oxidizer inlet velocity of $GN_2O$ is lower than that of GOX. However, in case of using $GN_2O$, the characteristic velocity is higher than those of the GOX. The combustion chamber pressure and thrust were relatively kept constant during combustion.

  • PDF