• 제목/요약/키워드: P. quinquefolius

검색결과 48건 처리시간 0.025초

Antioxidant Enzymes of Strains Panax ginseng C.A. Mey. and Panax quinquefolius L.

  • Slepyan L.I.;Kirillova N.V;Strelkova M.A.
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.502-508
    • /
    • 2002
  • The strains of Panax ginseng C.A. Mey., P. quinquefolius L. and selected strains P. ginseng-B, P.ginseng-A, P. quinquefolius-C were investigated. Activities of SOD, catalase and peroxydase were determined by methods of Fridovich et al. (1979), Komov et al.(1975), Bovaird et al.(1982) respectively. Activities of SOD, catalase, peroxydase were investigated every day 5 in cycle of cultivation. For P. ginseng it was the 35 days, P. quinquefolius the 70 days, P. quinquefolius-C 90 days. P. ginseng-B 90 days, P. ginseng-A 60 days. The P. quinquefolius, P. quinquefolius-C, P. ginseng-B had clear differentiation and developed tracheid elements, which are absent in strain of P. ginseng. The peaks of protein content for P. ginseng (4.5 units/g) and for P. quinquefolius (3.5 units/g) were on day 10 and remained unchanged till the last cultivation. The strain P. ginseng-A had two peaks of protein content (2.5 mg/g) on day 15 and on day 30. For P. ginseng-B strain these peaks were on day 5 and day 40 (3.5 mg/g). Peroxydase activity peak (60 units/g) in P. ginseng strain was on day 10. This activity in P. ginseng-B had two peaks on day 15 and day 35 and reached 95 units/g , increasing to 150 units/g to day 80. In strain of P. ginseng-A was only one maximum of this activity -130 units/g on day 45. In P. quinquefolius peroxydase activity was 103 units/g on day 40, increasing to 135 units/g to day 90. For P. quinquefolius-C this activity peak was 136 units/g on day 60. Peroxydase activities for the upper and lower layers of biomass was different and varied considerably from 28-35 units/g in lower to 270-290 units/g for upper layer. The SOD activity had two peaks in P. ginseng strain the 80 units/g and the 70 units/g on day 20 and day 35 respectively. Activity of SOD in P. quinquefolius strain reached 53 units/g on day 40 and increased up to 83 units/g to day 60.The similar increase of SOD activity was marked for P. ginseng-B to 85 units/g on day 90. In P. ginseng strain the 6 molecular isoforms SOD was defined. One of them with RfO,6 was determined in all days of cycle, three other (Rf-0.43; 0.54;0.80) only on day 10 and day 20. The isoform of SOD with Rf-0,29 was detected only on day 10 and with Rf-0,35 only on day 35. The catalase activity decreased in all strains to the last days of cultivation. The changes of SOD, catalase and peroxydase activities reflect the differences between the strains of Panax ginseng and Panax quinquefolius and their selected forms. The correlation between maximum life span of strains and activities of their antioxydant enzymes were detected.

  • PDF

UPLC-Q-TOF-MS/MS Analysis for Steaming Times-dependent Profiling of Steamed Panax quinquefolius and Its Ginsenosides Transformations Induced by Repetitious Steaming

  • Sun, Bai-Shen;Xu, Ming-Yang;Li, Zheng;Wang, Yi-Bo;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • 제36권3호
    • /
    • pp.277-290
    • /
    • 2012
  • The metabolic profiles of Panax quinquefolius and its associated therapeutic values are critically affected by the repetitious steaming times. The times-dependent steaming effect of P. quinquefolius is not well-characterized and there is also no official guideline on its times of steaming. In this paper, a UPLC-Q-TOF-MS/MS method was developed for the qualitative profiling of multi-parametric metabolic changes of raw P. quinquefolius during the repetitious steaming process. Our method was successful in discriminating the differentially multi-steamed herbs. Meantime, the repetitious steaming-inducing chemical transformations in the preparation of black American ginseng (American ginseng that was subjected to 9 cycles of steaming treatment) were evaluated by this UPLC-Q-TOF-MS/MS based chemical profiling method. Under the optimized UPLC-Q-TOF-MS/MS conditions, 29 major ginsenosides were unambiguously identified and/or tentatively assigned in both raw and multi-steamed P. quinquefolius within 19 min, among them 18 ginsenosides were detected to be newly generated during the preparatory process of black American ginseng. The mechanisms involved were further deduced to be hydrolysis, dehydration, decarboxylation and addition reactions of the original ginsenosides in raw P. quinquefolius through analyzing mimic 9 cycles of steaming extracts of 14 pure reference ginsenosides. Our novel steaming times-dependent metabolic profiling approach represents the paradigm shift in the global quality control of multi-steamed P. quinquefolius products.

Cytohistological study of the leaf structures of Panax ginseng Meyer and Panax quinquefolius L.

  • Lee, Ok Ran;Nguyen, Ngoc Quy;Lee, Kwang Ho;Kim, Young Chang;Seo, Jiho
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.463-468
    • /
    • 2017
  • Background: Both Panax ginseng Meyer and Panax quinquefolius are obligate shade-loving plants whose natural habitats are broadleaved forests of Eastern Asia and North America. Panax species are easily damaged by photoinhibition when they are exposed to high temperatures or insufficient shade. In this study, a cytohistological study of the leaf structures of two of the most well-known Panax species was performed to better understand the physiological processes that limit photosynthesis. Methods: Leaves of ginseng plants grown in soil and hydroponic culture were sectioned for analysis. Leaf structures of both Panax species were observed using a light microscope, scanning electron microscope, and transmission electron microscope. Results: The mesostructure of both P. ginseng and P. quinquefolius frequently had one layer of non-cylindrical palisade cells and three or four layers of spongy parenchymal cells. P. quinquefolius contained a similar number of stomata in the abaxial leaf surface but more tightly appressed enlarged grana stacks than P. ginseng contained. The adaxial surface of the epidermis in P. quinquefolius showed cuticle ridges with a pattern similar to that of P. ginseng. Conclusion: The anatomical leaf structure of both P. ginseng and P. quinquefolius shows that they are typical shade-loving sciophytes. Slight differences in chloroplast structure suggests that the two different species can be authenticated using transmission electron microscopy images, and light-resistant cultivar breeding can be performed via controlling photosynthesis efficiency.

Development of a single-nucleotide-polymorphism marker for specific authentication of Korean ginseng (Panax ginseng Meyer) new cultivar "G-1"

  • Yang, Dong-Uk;Kim, Min-Kyeoung;Mohanan, Padmanaban;Mathiyalagan, Ramya;Seo, Kwang-Hoon;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제41권1호
    • /
    • pp.31-35
    • /
    • 2017
  • Background: Korean ginseng (Panax ginseng) is a well-known medicinal plant of Oriental medicine that is still in practice today. Until now, a total of 11 Korean ginseng cultivars with unique features to Korean ginseng have been developed based on the pure-line-selection method. Among them, a new cultivar namely G-1 with different agricultural traits related to yield and content of ginsenosides, was developed in 2012. Methods: The aim of this study was to distinguish the new ginseng cultivar G-1 by identifying the unique single-nucleotide polymorphism (SNP) at its 45S ribosomal DNA and Panax quinquefolius region than other Korean ginseng cultivars using multiplex amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR). Results: A SNP at position of 45S ribosomal DNA region between G-1, P. quinquefolius, and the other Korean ginseng cultivars was identified. By designing modified allele-specific primers based on this site, we could specifically identified G-1 and P. quinquefolius via multiplex PCR. The unique primer for the SNP yielded an amplicon of size 449 bp in G-1 cultivar and P. quinquefolius. This study presents an effective method for the genetic identification of the G-1 cultivar and P. quinquefolius. Conclusion: The results from our study shows that this SNP-based approach to identify the G-1 cultivar will be a good way to distinguish accurately the G-1 cultivar and P. quinquefolius from other Korean ginseng cultivars using a SNP at 45S ribosomal DNA region.

미토콘드리아 DNA 염기서열 변이를 이용한 인삼 종 판별 연구 (Analysis of Mitochondrial DNA Sequence and Molecular Marker Development for Identification of Panax Species)

  • 조익현;방경환;김영창;김장욱;신미란;문지영;노봉수;현동윤;김동휘;차선우;김홍식
    • 한국약용작물학회지
    • /
    • 제21권2호
    • /
    • pp.91-96
    • /
    • 2013
  • This study describes the identification of Panax species using mitochondrial consensus primers. Initially, a total of thirty primers were tested in ten Korean ginseng cultivars and two foreign Panax species, P. quinquefolius and P. notoginseng. In the polymerase chain reaction (PCR) amplification results, three primers (cox1, nad1/2-3 and nad2/1-2) generated co-dominant polymorphic banding patterns discriminating Korean ginseng cultivars from P. quinquefolius and P. notoginseng. However, these primers could not generated polymorphisms among the Korean ginseng cultivars, and simply represented species-specific polymorphisms for P. quinquefolius and P. notoginseng. Primers PQ91 and PN418 were designed from the consensus sequence of nad1/2-3 region. Two banding patterns (A or B) were detected in PQ91. Korean ginseng cultivars and P. notoginseng shared the same banding pattern (A type) and P. quinquefolius was identified another banding pattern (B type). In the case of PN418, two banding patterns (A or B) were detected in the Korean ginseng cultivars and two foreign Panax species. Korean ginseng cultivars and P. quinquefolius shared the same banding pattern (A type) and P. notoginseng was identified another banding pattern (B type). The combination banding patterns of three Panax species, Korean ginseng cultivars (Panax ginseng C. A. Mey.), P. quinquefolius and P. notoginseng, was identified as 'AA', 'BA' and 'AB', respectively. Consequently, PQ91 and PN418 primer sets can be used to distinguish among Panax species.

Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng

  • Wei, Guangfei;Yang, Feng;Wei, Fugang;Zhang, Lianjuan;Gao, Ying;Qian, Jun;Chen, Zhongjian;Jia, Zhengwei;Wang, Yong;Su, He;Dong, Linlin;Xu, Jiang;Chen, Shilin
    • Journal of Ginseng Research
    • /
    • 제44권6호
    • /
    • pp.757-769
    • /
    • 2020
  • Background: Panax quinquefolius and Panax notoginseng are widely used and well known for their pharmacological effects. As main pharmacological components, saponins have different distribution patterns in the root tissues of Panax plants. Methods: In this study, the representative ginsenosides were detected and quantified by desorption electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues. Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin distribution by gene profiles. Results: There was saponin distribution in the root tissues differed between P. quinquefolius and P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively. Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re, Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89, CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng.

Structural analysis, anti-inflammatory activity of the main water-soluble acidic polysaccharides (AGBP-A3) from Panax quinquefolius L berry

  • Zhihao Zhang;Huijiao Yan;Hidayat Hussain;Xiangfeng Chen;Jeong Hill Park;Sung Won Kwon;Lei Xie;Bowen Zheng;Xiaohui Xu;Daijie Wang;Jinao Duan
    • Journal of Ginseng Research
    • /
    • 제48권5호
    • /
    • pp.454-463
    • /
    • 2024
  • Background: Panax quinquefolius L, widely recognized for its valuable contributions to medicine, has aroused considerable attention globally. Different from the extensive research has been dedicated to the root of P. quinquefolius, its berry has received relatively scant focus. Given its promising medicinal properties, this study was focused on the structural characterizations and anti-inflammatory potential of acidic polysaccharides from the P. quinquefolius berry. Materials and methods: P. quinquefolius berry was extracted with hot water, precipitated by alcohol, separated by DEAE-52-cellulose column to give a series of fractions. One of these fractions was further purified via Sephadex G-200 column to give three fractions. Then, the main fraction named as AGBP-A3 was characterized by methylation analysis, NMR spectroscopy, etc. Its anti-inflammatory activity was assessed by RAW 264.7 cell model, zebrafish model and molecular docking. Results: The main chain comprised of α-L-Rhap, α-D-GalAp and β-D-Galp, while the branch consisted mainly of α-L-Araf, β-D-Glcp, α-D-GalAp, β-D-Galp. The RAW264.7 cell assay results showed that the inhibition rates against IL-6 and IL-1β secretion at the concentration of 625 ng/mL were 24.83 %, 11.84 %, while the inhibition rate against IL-10 secretion was 70.17 % at the concentration of 312 ng/mL. In the zebrafish assay, the migrating neutrophils were significantly reduced in number, and their migration to inflammatory tissues was inhibited. Molecular docking predictions correlated well with the results of the anti-inflammatory assay. Conclusion: The present study demonstrated the structure of acidic polysaccharides of P. quinquefolius berry and their effect on inflammation, providing a reference for screening anti-inflammatory drugs.

Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS

  • Park, Hee-Won;In, Gyo;Kim, Jeong-Han;Cho, Byung-Goo;Han, Gyeong-Ho;Chang, Il-Moo
    • Journal of Ginseng Research
    • /
    • 제38권1호
    • /
    • pp.59-65
    • /
    • 2014
  • Discriminating between two herbal medicines (Panax ginseng and Panax quinquefolius), with similar chemical and physical properties but different therapeutic effects, is a very serious and difficult problem. Differentiation between two processed ginseng genera is even more difficult because the characteristics of their appearance are very similar. An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS)-based metabolomic technique was applied for the metabolite profiling of 40 processed P. ginseng and processed P. quinquefolius. Currently known biomarkers such as ginsenoside Rf and F11 have been used for the analysis using the UPLC-photodiode array detector. However, this method was not able to fully discriminate between the two processed ginseng genera. Thus, an optimized UPLC-QTOF-based metabolic profiling method was adapted for the analysis and evaluation of two processed ginseng genera. As a result, all known biomarkers were identified by the proposed metabolomics, and additional potential biomarkers were extracted from the huge amounts of global analysis data. Therefore, it is expected that such metabolomics techniques would be widely applied to the ginseng research field.

Authentication of Korean Panax ginseng from Chinease Panax ginseng and Panax quinquefolius by AFLP analysis

  • Kim Bo-Bae;Jeong Jae-Hun;Jung Su-Jin;Yun Doh-Won;Yoon Eui-Soo;Choi Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • 제7권2호
    • /
    • pp.81-86
    • /
    • 2005
  • Panax ginseng is one of the most important medicinal plants in the world. The international trade of ginseng is increasing yearly. The disguise of Chinese and American ginseng into Korean ginseng became a problem in recent years in abroad and Korea. An effective method to authenticate the Korean Panax ginseng from others at a DNA level is necessary for the healthy development of the ginseng market. Amplified fragment length polymorphism (AFLP) analysis was applied to develop a method for the identification of Korean ginseng between Chinese ginseng and American ginseng. It is very difficult to detect the different polymorphic bands among Korean field cultivated ginseng, and between field and wild-cultivated ginseng. The genetic distance coefficient by AFLP analysis between field- and wild cultivated Korean ginseng was very low, 0.056. Whereas, polymorphic bands between Korean and Chinese wild-cultivated ginseng was significantly different. The genetic distance coefficient between wild-cultivated Korean and Chinese ginseng was 0.149. The genetic distance coefficients between the P. ginseng and P. quinquefolius were ranging from 0.626 to 0.666. These results support that the AFLP analysis could be applied to authenticate Korean P. ginseng from others Chinese P. ginseng and American ginseng (P. quinquefolius).

Discrimination of Korean ginseng (Panax ginseng Meyer) cultivar Chunpoong and American ginseng (Panax quinquefolius) using the auxin repressed protein gene

  • Kim, Jong-Hak;Kim, Min-Kyeoung;Wang, Hongtao;Lee, Hee-Nyeong;Jin, Chi-Gyu;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.395-399
    • /
    • 2016
  • Background: Korean ginseng (Panax ginseng) is one of the most important medicinal plants in the Orient. Among nine cultivars of P. ginseng, Chunpoong commands a much greater market value and has been planted widely in Korea. Chunpoong has superior quality "Chunsam" ($1^{st}$ grade ginseng) when made into red ginseng. Methods: A rapid and reliable method for discriminating the Chunpoong cultivar was developed by exploiting a single nucleotide polymorphism (SNP) in the auxin repressed protein gene of nine Korean ginseng cultivars using specific primers. Results: An SNP was detected between Chunpoong and other cultivars, and modified allele-specific primers were designed from this SNP site to specifically identify the Chunpoong cultivar and P. quinquefolius via multiplex polymerase chain reaction (PCR). Conclusion: These results suggest that great impact to prevent authentication of precise Chunpoong and other cultivars using the auxin repressed protein gene. We therefore present an effective method for the authentication of the Chunpoong cultivar of P. ginseng and P. quinquefolius.