Browse > Article
http://dx.doi.org/10.1016/j.jgr.2015.12.007

Development of a single-nucleotide-polymorphism marker for specific authentication of Korean ginseng (Panax ginseng Meyer) new cultivar "G-1"  

Yang, Dong-Uk (Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University)
Kim, Min-Kyeoung (KM Fundamental Research Division, Korea Institute of Oriental Medicine)
Mohanan, Padmanaban (Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University)
Mathiyalagan, Ramya (Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University)
Seo, Kwang-Hoon (Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University)
Kwon, Woo-Saeng (Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University)
Yang, Deok-Chun (Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University)
Publication Information
Journal of Ginseng Research / v.41, no.1, 2017 , pp. 31-35 More about this Journal
Abstract
Background: Korean ginseng (Panax ginseng) is a well-known medicinal plant of Oriental medicine that is still in practice today. Until now, a total of 11 Korean ginseng cultivars with unique features to Korean ginseng have been developed based on the pure-line-selection method. Among them, a new cultivar namely G-1 with different agricultural traits related to yield and content of ginsenosides, was developed in 2012. Methods: The aim of this study was to distinguish the new ginseng cultivar G-1 by identifying the unique single-nucleotide polymorphism (SNP) at its 45S ribosomal DNA and Panax quinquefolius region than other Korean ginseng cultivars using multiplex amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR). Results: A SNP at position of 45S ribosomal DNA region between G-1, P. quinquefolius, and the other Korean ginseng cultivars was identified. By designing modified allele-specific primers based on this site, we could specifically identified G-1 and P. quinquefolius via multiplex PCR. The unique primer for the SNP yielded an amplicon of size 449 bp in G-1 cultivar and P. quinquefolius. This study presents an effective method for the genetic identification of the G-1 cultivar and P. quinquefolius. Conclusion: The results from our study shows that this SNP-based approach to identify the G-1 cultivar will be a good way to distinguish accurately the G-1 cultivar and P. quinquefolius from other Korean ginseng cultivars using a SNP at 45S ribosomal DNA region.
Keywords
G-1 cultivar; multiplex polymerase chain reaction; Panax ginseng; Panax quinquefolius; Single-nucleotide polymorphism;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Ha WY, Shaw PC, Liu J, Yau FC, Wang J. Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J Agric Food Chem 2002;50:1871-5.   DOI
2 Sousa A, Barros e Silva AE, Cuadrado A, Loarce Y, Alves MV, Guerra M. Distribution of 5S and 45S rDNA sites in plants with holokinetic chromosomes and the “chromosome field” hypothesis. Micron 2011;42:625-31.   DOI
3 Guerra M, Kenton A, Bennett MD. rDNA sites in mitotic and polytene chromosomes of Vigna unguiculata (L.) Walp. and Phaseolus coccineus L. revealed by in situ hybridization. Ann Bot 1996;78:157-61.   DOI
4 Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-8.
5 Landegren U, Nilsson M, Kwok PY. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res 1998;8:769-76.   DOI
6 Medrano RF, de Oliveira CA. Guidelines for the tetra-primer ARMS-PCR technique development. Mol Biotechnol 2014;56:599-608.
7 Kanazin V, Talbert H, See D, DeCamp P, Nevo E, Blake T. Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare). Plant Mol Bio 2002;48:529-37.   DOI
8 Kim MK, Jang GH, Yang DC, Lee SH, Lee HN, Jin CG. Molecular authentication of Acanthopanacis cortex by multiplex-PCR analysis tools. Korean J Plant Res 2014;27:680-6.   DOI
9 Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 1989;17(7):2503-16.   DOI
10 Zhan XJ, Tian C, Zhang Y, Liu CS. PCR-SSCP molecular identification of Panax ginseng and P. quinquefolius based on ITS2 bar coding SNPs. Zhongguo Zhong yao za zhi 2012;37:3748-51.
11 Um JY, Chung HS, Kim MS, Na HJ, Kwon HJ, Kim JJ, Lee KM, Lee SJ, Lim JP, Do KR. Molecular authentication of Panax ginseng species by RAPD analysis and PCR-RFLP. Biol Pharm Bull 2001;24:872-5.   DOI
12 Wang J, Ha WY, Ngan FN, But PP, Shaw PC. Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants. Planta Med 2001;67:781-3.   DOI
13 Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93.   DOI
14 Chong SK, Oberholzer VG. Ginseng-is there a use in clinical medicine? Postgrad Med J 1988;64:841-6.   DOI
15 Lee JW, Kim YC, Jo IH, Seo AY, Lee JH, Kim OT, Hyun DY, Cha SW, Bang KH, Cho JH. Development of an ISSR-derived SCAR marker in Korean ginseng cultivars (Panax ginseng C. A. Meyer). J Ginseng Res 2011;35:52-9.   DOI
16 In JG, Kim MK, Lee OR, Kim YJ, Lee BS, Kim SY, Kwon WS, Yang DC. Molecular identification of Korean mountain ginseng using an amplification refractory mutation system (ARMS). J Ginseng Res 2010;34:41-6.   DOI
17 Lee JH, Lee JS, Kwon WS, Kang JY, Lee DY, In JG, Kim YS, Seo J, Baeg IH, Chang IM, et al. Characteristics of Korean ginseng varieties of Gumpoong, Sunun, Sunpoong, Sunone, Cheongsun, and Sunhyang. J Ginseng Res 2015;39:94-104.   DOI
18 Jung J, Kim KH, Yang KW, Bang KH, Yang TJ. Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products. J Ginseng Res 2014;38:123-9.   DOI
19 Kwon WS, Chung CM, Kim YT, Lee MG, Choi KT. Breeding process and characteristics of KG101, a superior line of Panax ginseng C. A. Meyer. Korean J Ginseng Sci 1998;22:11-7.
20 Kwon WS, Lee MG, Choi KT. Breeding process and characteristics of Yunpoong, a new variety of Panax ginseng C.A. Meyer. J Ginseng Res 2000;24:1-7.
21 Chen CF, Chiou WF, Zhang JT. Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolius. Acta Pharmacol Sin 2008;29:1103-8.   DOI
22 Ngan F, Shaw P, But P, Wang J. Molecular authentication of Panax species. Phytochemistry 1999;50:787-91.   DOI
23 Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-18.   DOI
24 Mathiyalagan R, Subramaniyam S, Kim YJ, Kim YC, Yang DC. Ginsenoside compound K-bearing glycol chitosan conjugates: synthesis, physicochemical characterization and in vitro biological studies. Carbohydr Polym 2014;112:359-66.   DOI
25 Mathiyalagan R, Subramaniyam S, Kim YJ, Natarajan S, Min JW, Kim SY, Yang DC. Synthesis and pharmacokinetic characterization of a pH-sensitive polyethylene glycol ginsenoside CK (PEG-CK) conjugate. Biosci Biotechnol Biochem 2014;78:466-8.   DOI
26 Park HJ, Kim DH, Park SJ, Kim JM, Ryu JH. Ginseng in traditional herbal prescriptions. J Ginseng Res 2012;36:225-41.   DOI
27 Wang HT, Hua S, Kwon WS, Jin HZ, Yang DC. A PCR-based SNP marker for specific authentication of Korean ginseng (Panax ginseng) cultivar "Chunpoong". Mol Biol Rep 2010;37:1053-7.   DOI