• Title/Summary/Keyword: P. Finsler

Search Result 11, Processing Time 0.024 seconds

GENERALIZED MYERS THEOREM FOR FINSLER MANIFOLDS WITH INTEGRAL RICCI CURVATURE BOUND

  • Wu, Bing-Ye
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.841-852
    • /
    • 2019
  • We establish the generalized Myers theorem for Finsler manifolds under integral Ricci curvature bound. More precisely, we show that the forward complete Finsler n-manifold whose part of Ricci curvature less than a positive constant is small in $L^p$-norm (for p > n/2) have bounded diameter and finite fundamental group.

On the History of the Birth of Finsler Geometry at Göttingen (괴팅겐에서 핀슬러 기하가 탄생한 역사)

  • Won, Dae Yeon
    • Journal for History of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.133-149
    • /
    • 2015
  • Arrivals of Hilbert and Minkowski at $G\ddot{o}ttingen$ put mathematical science there in full flourish. They further extended its strong mathematical tradition of Gauss and Riemann. Though Riemann envisioned Finsler metric and gave an example of it in his inaugural lecture of 1854, Finsler geometry was officially named after Minkowski's academic grandson Finsler. His tool to generalize Riemannian geometry was the calculus of variations of which his advisor $Carath\acute{e}odory$ was a master. Another $G\ddot{o}ttingen$ graduate Busemann regraded Finsler geometry as a special case of geometry of metric spaces. He was a student of Courant who was a student of Hilbert. These figures all at $G\ddot{o}ttingen$ created and developed Finsler geometry in its early stages. In this paper, we investigate history of works on Finsler geometry contributed by these frontiers.

MYLLER CONFIGURATIONS IN FINSLER SPACES. APPLICATIONS TO THE STUDY OF SUBSPACES AND OF TORSE FORMING VECTOR FIELDS

  • Constantinescu, Oana
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1443-1482
    • /
    • 2008
  • In this paper we define a Myller configuration in a Finsler space and use some special configurations to obtain results about Finsler subspaces. Let $F^{n}$ = (M,F) be a Finsler space, with M a real, differentiable manifold of dimension n. Using the pull back bundle $({\pi}^{*}TM,\tilde{\pi},\widetilde{TM})$ of the tangent bundle $(TM,{\pi},M)$ by the mapping $\tilde{\pi}={\pi}/TM$ and the Cartan Finsler connection of a Finsler space, we obtain an orthonormal frame of sections of ${\pi}^{*}TM$ along a regular curve in $\widetilde{TM}$ and a system of invariants, geometrically associated to the Myller configuration. The fundamental equations are written in a very simple form and we prove a fundamental theorem. Important lines in a Finsler subspace are defined like special lines in a Myller configuration, geometrically associated to the subspace: auto parallels, lines of curvature, asymptotes. Torse forming vector fields with respect to the Cartan Finsler connection are characterized by means of the invariants of the Frenet frame of a versor field along a curve, and the new notion of torse forming vector fields in the sense of Myller is introduced. The particular cases of concurrence and parallelism in the sense of Myller are completely studied, for vector fields from the distribution $T^m$ of the Myller configuration and also from the normal distribution $T^p$.

THE FUNDAMENTAL FORMULAS OF FINSLER SUBMANIFOLDS

  • Li, Jintang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.767-775
    • /
    • 2010
  • Let ${\varphi}\;:\;(M^n,\;F)\;{\rightarrow}\;(\overline{M}^{n+p},\;\overline{F})$ be an isometric immersion from a Finsler manifold to a Finsler manifold. In this paper, we shall obtain the Gauss and Codazzi equations with respect to the Chern connection on submanifolds M, by which we prove that if M is a weakly totally geodesic submanifold of $\overline{M}$, then flag curvature of M equals flag curvature of $\overline{M}$.

ON GENERALIZED FINSLER STRUCTURES WITH A VANISHING hυ-TORSION

  • Ichijyo, Yoshihiro;Lee, Il-Yong;Park, Hong-Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.369-378
    • /
    • 2004
  • A canonical Finsler connection Nr is defined by a generalized Finsler structure called a (G, N)-structure, where G is a generalized Finsler metric and N is a nonlinear connection given in a differentiable manifold, respectively. If NT is linear, then the(G, N)-structure has a linearity in a sense and is called Berwaldian. In the present paper, we discuss what it means that NT is with a vanishing hv-torsion: ${P^{i}}\;_{jk}\;=\;0$ and introduce the notion of a stronger type for linearity of a (G, N)-structure. For important examples, we finally investigate the cases of a Finsler manifold and a Rizza manifold.

On the history of the establishment of the Hungarian Debrecen School of Finsler geometry after L. Berwald (베어왈트에 의한 헝가리 데브레첸 핀슬러 기하학파의 형성의 역사)

  • Won, Dae Yeon
    • Journal for History of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.37-51
    • /
    • 2018
  • In this paper, our main concern is the historical development of the Finsler geometry in Debrecen, Hungary initiated by L. Berwald. First we look into the research trend in Berwald's days affected by the $G{\ddot{o}}ttingen$ mathematicians from C. Gauss and downward. Then we study how he was motivated to concentrate on the then completely new research area, Finsler geometry. Finally we examine the course of establishing Hungarian Debrecen school of Finsler geometry via the scholars including O. Varga, A. $Rapcs{\acute{a}}k$, L. $Tam{\acute{a}}ssy$ all deeply affected by Berwald after his settlement in Debrecen, Hungary.

HOMOGENEOUS GEODESICS IN HOMOGENEOUS SUB-FINSLER MANIFOLDS

  • Zaili Yan;Tao Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1607-1620
    • /
    • 2023
  • In this paper, we mainly study the problem of the existence of homogeneous geodesics in sub-Finsler manifolds. Firstly, we obtain a characterization of a homogeneous curve to be a geodesic. Then we show that every compact connected homogeneous sub-Finsler manifold and Carnot group admits at least one homogeneous geodesic through each point. Finally, we study a special class of ℓp-type bi-invariant metrics on compact semi-simple Lie groups. We show that every homogeneous curve in such a metric space is a geodesic. Moreover, we prove that the Alexandrov curvature of the metric space is neither non-positive nor non-negative.

DECOMPOSITION FOR CARTAN'S SECOND CURVATURE TENSOR OF DIFFERENT ORDER IN FINSLER SPACES

  • Abdallah, Alaa A.;Navlekar, A.A.;Ghadle, Kirtiwant P.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.433-448
    • /
    • 2022
  • The Cartan's second curvature tensor Pijkh is a positively homogeneous of degree-1 in yi, where yi represent a directional coordinate for the line element in Finsler space. In this paper, we discuss the decomposition of Cartan's second curvature tensor Pijkh in two spaces, a generalized 𝔅P-recurrent space and generalized 𝔅P-birecurrent space. We obtain different tensors which satisfy the recurrence and birecurrence property under the decomposition. Also, we prove the decomposition for different tensors are non-vanishing. As an illustration of the applicability of the obtained results, we finish this work with some illustrative examples.