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GENERALIZED MYERS THEOREM FOR FINSLER

MANIFOLDS WITH INTEGRAL RICCI CURVATURE BOUND

Bing-Ye Wu

Abstract. We establish the generalized Myers theorem for Finsler mani-

folds under integral Ricci curvature bound. More precisely, we show that
the forward complete Finsler n-manifold whose part of Ricci curvature

less than a positive constant is small in Lp-norm (for p > n/2) have
bounded diameter and finite fundamental group.

1. Introduction

The celebrated Myers theorem in global Riemannian geometry says that if
a Riemannian manifold M satisfies Ric(v) > n− 1 for all unit vectors v, then
M is compact with diam(M) 6 π, and the fundamental group π1(M) is finite.
There has been many generalizations of Myers theorem where the point-wise
Ricci curvature is replaced by the integral or line integral of Ricci curvature
(see e.g., [1, 3, 4, 10]).

Myers theorem has also been generalized to Finsler manifolds [2], and re-
cently we establish a generalized Myers theorem under the line integral curva-
ture bound for Finsler manifolds [8]. The main purpose of the present paper
is to establish the generalized Myers theorem for Finsler manifolds under inte-
gral Ricci curvature bound. More precisely, we want to show that the forward
complete Finsler n-manifold whose part of Ricci curvature less than a positive
constant is small in Lp-norm (for p > n/2) have bounded diameter and finite
fundamental group. To state the main result let us first recall some notations.
On a Finsler manifold (M,F ) let dVmax and dVmin be the maximal volume form
and minimal volume form, respectively, and we shall denote by volmin (resp.
volmax) the volume with respect to dVmin (resp. dVmax). Let Ric : M → R be
the function of smallest Ricci curvature at given point. More precisely,

Ric(x) = min
y∈TxM\{0}

Ric(y), ∀x ∈M.

The main purpose of the present paper is to prove the following.
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Main Result. Let (M,F ) be a forward complete Finsler n-manifold with finite
uniformity constant µF =: Λ2. If

∫
M

(max{n− 1−Ric, 0})pdVmax is finite for
some p > n/2, then the minimal volume volmin(M) of M is finite. In this
situation, there exist two positive constants A(n, p,Λ) and B(n, p,Λ) such that
when

ε =

(∫
M

(max{n− 1−Ric, 0})pdVmax

volmin(M)

) 1
p

6 A(n, p,Λ),

then M is compact with diam(M) 6 π+B(n, p,Λ)ε
p(n−1)
n(2p−1) , and the fundamental

group π1(M) of M is finite.

Remark. When F is Riemannian, the main result is essentially reduced to
Aubry’s result [1]. It is also clear that ε = 0 when Ric > n− 1, and the main
result is reduced to the classical Myers theorem.

2. Preliminaries

In this section we recall some basic notations and formulas that are needed
to prove the main results, for details one is referred to see [6, 7, 9]. Let
(M,F ) be a Finsler n-manifold with Finsler metric F : TM → [0,∞), and
(x, y) = (xi, yi) be local coordinates on TM . The fundamental tensor gy on

TxM\{0} is defined by gy(u, v) = gij(x, y)uivj for any u = ui ∂
∂xi , v = vi ∂

∂xi ,

here gij(x, y) := 1
2
∂2F 2(x,y)
∂yi∂yj . A volume form on Finsler manifold (M,F ) is

nothing but a global non-degenerate n-form on M . The frequently used vol-
ume forms in Finsler geometry are so-called Busemann-Hausdorff volume form
and Holmes-Thompson volume form. In [6] we introduce the maximal and
minimal volume forms for Finsler manifolds which play the important role in
comparison technique in Finsler geometry. They are defined as follows. Let

dVmax = σmax(x)dx1 ∧ · · · ∧ dxn

and

dVmin = σmin(x)dx1 ∧ · · · ∧ dxn

with

σmax(x) := max
y∈TxM\0

√
det(gij(x, y)), σmin(x) := min

y∈TxM\0

√
det(gij(x, y)).

Then it is easy to check that the n-forms dVmax and dVmin are well-defined
on M , and they are called the maximal volume form and the minimal volume
form of (M,F ), respectively. Both maximal volume form and minimal volume
form are called extreme volume form.

The uniformity function µ : M → R is defined by

µ(x) = max
y,z,u∈TxM\0

gy(u, u)

gz(u, u)
.
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µF = maxx∈M µ(x) is called the uniformity constant. Similarly, the reversibility
function λ : M → R is defined by

λ(x) = max
y∈TxM\0

F (y)

F (−y)
.

λF = maxx∈M λ(x) is called the reversibility of (M,F ). It is clear that λ(x)2 6
µ(x), and dF (x, y) 6 λF dF (y, x) for x, y ∈M , here dF is the distance induced
by F . The forward geodesic ball Bx(R) with radius R centered at x ∈ M is
defined by Bx(R) = {y ∈ M : dF (x, y) < R}. Let T ⊂ M be a star-shaped
subset at x ∈ T , that means that for all y ∈ T there exists a minimal geodesic
from x to y contained in T . Write T (r) = T ∩ Bx(r) for r > 0. We shall need
the following relative volume comparison theorem with integral Ricci curvature
bound which is the special case of Theorem 1.1 in [7] (see also [9]).

Theorem 2.1. Let (M,F ) be a forward complete Finsler n-manifold with finite
uniformity constant µF := Λ2, and T ⊂ Bx(RT ) be a star-shaped subset at x.
For any p > n/2 there exists a constant C(n, p,RT ) > 0 such that when

ε :=

(∫
T

(max{−Ric, 0})pdVmax

volmin(T )

) 1
p

<

(
1

2C(n, p,RT )

) 2p−1
p

,

then one has for all 0 < r 6 R 6 RT ,

volmin(T (R))

Rn
6

(
1− C(n, p,RT )ε

p
2p−1

1− 2C(n, p,RT )ε
p

2p−1

)2p−1

· Λn · volmin(T (r))

rn
.

For given compact Finsler manifold (M,F ), let f : (M̃, F̃ ) → (M,F ) be
the universal covering with pulled-back metric, then it is known that the fun-
damental group π1(M) is isomorphic to the deck transformation group Γ and

each deck transformation is an isometry of (M̃, F̃ ) (see [5, 9] for details). The
following lemma is crucial to prove the finiteness of π1(M).

Lemma 2.2 ([7, 9]). Let f : (M̃, F̃ )→ (M,F ) be the universal covering space

of (M,F ). Then for any forward geodesic ball Bx̃(r) ⊂ M̃ with r > diam(M)
there exists a star-shaped subset T at x̃ satisfying Bx̃(r) ⊂ T ⊂ Bx̃((2 + λF )r)
and ∫

T
(max{n− 1−Ric, 0})pdVmax

volmin(T )
=

∫
M

(max{n− 1−Ric, 0})pdVmax

volmin(M)
.

Fix x ∈ M , let Sx = {v ∈ TxM : F (v) = 1} be the indicatrix at x. For
v ∈ Sx, the cut-value c(v) is defined by

c(v) := sup{t > 0 : dF (x, expx(tv)) = t}.
Then, we can define the tangential cut locus C(x) of x by C(x) := {c(v)v :
c(v) < ∞, v ∈ Sx} and the cut locus C(x) of x by C(x) = expxC(x), re-
spectively. It is known that C(x) has zero Hausdorff measure in M . Also,
we set Dx = {tv : 0 6 t < c(v), v ∈ Sx} and D(x) = expxDx. It is known
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that Dx is the largest domain, which is star-shaped with respect to the ori-
gin of TxM for which expx restricted to that domain is a diffeomorphism, and
D(x) = M\C(x).

In the following we consider the polar coordinates on D(x). For any q ∈
D(x), the polar coordinates of q are defined by (r, θ)=(r(q), θ1(q), . . . , θn−1(q)),
where r(q) = F (v), θα(q) = θα(u), here v = exp−1

x (q) and u = v/F (v). It is
well-known that the unit radial coordinate vector ∂r = d(expx)

(
∂
∂r

)
is g∂r-

orthogonal to coordinate vectors ∂α. Consider the singular Riemannian metric
g̃ = g∂r on D(x), we write the corresponding Riemannian volume form by
dVg̃ = σ̃(r, θ)dr ∧ dθ. Then

(2.1) dVmin 6 dVg̃ 6 dVmax 6 µ
n
2

F dVmin.

Let Dx(r) ⊂ Sx be defined by Dx(r) = {v ∈ Sx : rv ∈ Dx}. It is easy to see
that Dx(r1) ⊂ Dx(r2) for r1 > r2. Since C(x) has zero Hausdorff measure in
M , the volume of Bx(R) with respect to dVg̃ is given by

volg̃(Bx(R)) =

∫
Bx(R)

dVg̃ =

∫
Bx(R)∩D(x)

dVg̃

=

∫ R

0

dr

∫
Dx(r)

σ̃(r, θ)dθ =:

∫ R

0

A(r)dr.(2.2)

Put

(2.3) h = h(r, θ) =
∂

∂r
log σ̃(r, θ).

For c > 0 let

(2.4) σc(r) =

[
sin(
√
cr)√
c

]n−1

, hc(r) = (log σc)
′ = (n− 1)

√
c cot(

√
cr).

Write ρc = max{(n− 1)c−Ric, 0}, and define ψc = ψc(t, θ) = max{0, h(t, θ)−
hc(t)}. The following lemma is the special case of Lemma 4.2 in [7] (see also
Lemma 2.22 in [9]).

Lemma 2.3. Let c > 0, p > n/2 and 0< r < π√
c
. Then

sin4p−n−1(
√
cr)ψ2p−1

c (r, θ)σ̃(r, θ) 6 (2p− 1)p
(
n− 1

2p− n

)p−1∫ r

0

ρpc(t, θ)σ̃(t, θ)dt.

3. Auxiliary lemmas

In this section we shall derive some auxiliary lemmas that are needed to
prove the main result. We always assume that (M,F ) is a forward complete
Finsler n-manifold with finite uniformity constant µF =: Λ2, and p > n/2.

Lemma 3.1. Let 0 < ε′ 6 π
4 , and A = A(s) be defined by (2.2). There exists a

positive constant C1(n, p) such that for all radius r > π the following inequality
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holds:

A(r)
1

2p−1 6

(
12

π

) 1
2p−1

(
√

2ε′)
n−1
2p−1 [volg̃(Bx(r))]

1
2p−1

+ C1(n, p)

[∫
Bx(r)

ρp1dVg̃

] 1
2p−1

ε′
n−2p
2p−1 r.(3.1)

Proof. For c > 0, and 0 < t < r < π/
√
c, notice that Dx(r) ⊂ Dx(t) for all

t < r, the function

f(s) =

∫
Dx(r)

σ̃(s, θ)dθ

is differentiable on (0, r]. By (2.3) and (2.4) we easily get

d

ds

[
f(s)

σc(s)

]α
= α

[
f(s)

σc(s)

]α−1 ∫
Dx(r)

σ̃(s, θ)

σc(s)
(h(s, θ)− hc(s))dθ

6 α
f(s)α−1

σc(s)α

∫
Dx(r)

σ̃(s, θ)ψc(s, θ)dθ,

here α > 0. Consequently,[
A(r)

σc(r)

]α
−
[
A(t)

σc(t)

]α
=

[∫
Dx(r)

σ̃(r, θ)

σc(r)
dθ

]α
−

[∫
Dx(t)

σ̃(t, θ)

σc(t)
dθ

]α

6

[∫
Dx(r)

σ̃(r, θ)

σc(r)
dθ

]α
−

[∫
Dx(r)

σ̃(t, θ)

σc(t)
dθ

]α
=

[
f(r)

σc(r)

]α
−
[
f(t)

σc(t)

]α
(3.2)

=

∫ r

t

d

ds

[
f(s)

σc(s)

]α
ds

6 α
∫ r

t

f(s)α−1

σc(s)α

∫
Dx(r)

σ̃(s, θ)ψc(s, θ)dθds.

By the Hölder inequality we have∫
Dx(r)

σ̃(s, θ)ψc(s, θ)dθ

6

[∫
Dx(r)

ψ2p−1
c (s, θ)σ̃(s, θ)dθ

] 1
2p−1

[∫
Dx(r)

σ̃(s, θ)dθ

] 2p−2
2p−1

(3.3)

=

[∫
Dx(r)

ψ2p−1
c (s, θ)σ̃(s, θ)dθ

] 1
2p−1

[f(s)]
2p−2
2p−1 .
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Now (3.2) and (3.3) yield[
A(r)

σc(r)

]α
−
[
A(t)

σc(t)

]α
(3.4)

6 α

∫ r

t

f(s)α−
1

2p−1

σc(s)α

[∫
Dx(r)

ψ2p−1
c (s, θ)σ̃(s, θ)dθ

] 1
2p−1

ds.

Notice that σc(r) =
[

sin(
√
cr)√
c

]n−1

, and put α = 1
2p−1 , from (3.4) and Lemma

2.3 we reach at[
A(r)

sinn−1(
√
cr)

] 1
2p−1

−
[

A(t)

sinn−1(
√
ct)

] 1
2p−1

(3.5)

6
1

2p−1

∫ r

t

1

sin2(
√
cs)

[∫
Dx(r)

sin4p−n−1(
√
cs)ψ2p−1

c (s, θ)σ̃(s, θ)dθ

] 1
2p−1

ds

6

[
n−1

(2p−n)(2p−1)

] p−1
2p−1

[∫
Bx(r)

ρpcdVg̃

] 1
2p−1 ∫ r

t

ds

sin2(
√
cs)

.

For given 0 < ε′ 6 π
4 , let c =

(
π−ε′
r

)2

< 1, t ∈ [ 2
3r,

3
4r], then ρc 6 ρ1,

√
ct ∈

[π2 ,
3
4π], and

sin(
√
cr) = sin(π − ε′) < ε′, sin(

√
ct) > sin

3

4
π =

1√
2
,

∫ r

t

ds

sin2(
√
cs)

=
1√
c
[cot(

√
ct)− cot(

√
cr)] < −cot(π − ε′)√

c
<

1√
cε′
6

4r

3πε′
.

Thus from (3.5) it follows that

(3.6) A(r)
1

2p−1 6 (
√

2ε′)
n−1
2p−1A(t)

1
2p−1 + C1(n, p)

[∫
Bx(r)

ρp1dVg̃

] 1
2p−1

ε′
n−2p
2p−1 r,

here

(3.7) C1(n, p) =
4

3π

[
n− 1

(2p− n)(2p− 1)

] p−1
2p−1

.

Finally, by the mean value property we may choose t ∈ [ 2
3r,

3
4r] so that

(3.8) A(t) =
12

r

∫ 3
4 r

2
3 r

A(s)ds 6
12

π

∫ r

0

A(s)ds =
12

π
volg̃(Bx(r)).

Substituting (3.8) into (3.6) we easily get (3.1). �
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Lemma 3.2. Let

(3.9) C2(n, p) :=

[(
12

π

) 1
2p−1

(
√

2)
n−1
2p−1 + C1(n, p)(π + 2)

]2p−1

,

(3.10) B(n, p,Λ) := Λ3R
[
22pC2(n, p)

] 1
n ,

(3.11)

A1(n, p,Λ) := min

(π4)
2p−1

p

,

(
1

3C(n, p,R)

) 2p−1
p

,

(
0.9

B(n, p,Λ)

)n(2p−1)
p(n−1)

 ,

here

(3.12) R = R(Λ) = (Λ + 1)(π + 1) + Λ−1.

If

(3.13) ε =

(∫
By(R)

(max{n− 1−Ric, 0})pdVmax

volmin(By(R))

) 1
p

6 A1(n, p,Λ)

holds for some y∈M , then M is compact with diam(M)6π+B(n, p,Λ)ε
p(n−1)
n(2p−1) .

Proof. By (3.11) it is clear that B(n, p,Λ)ε
p(n−1)
n(2p−1) 6 0.9 if (3.13) holds. Now

we claim that if (3.13) holds, then dF (x, y) 6 π + B(n, p,Λ)ε
p(n−1)
n(2p−1) holds for

any x ∈ M . Otherwise, there exists x ∈ M such that dF (x, y) = π + δ with

B(n, p,Λ)ε
p(n−1)
n(2p−1) < δ 6 1. In this situation, it is easy to check that

(3.14) By(Λ−1δ) ⊂ Bx(π + δ + Λ−1δ)\Bx(π) ⊂ By(R),

here R = R(Λ) is defined by (3.12). By (3.11) A1(n, p,Λ) 6 (π4 )
2p−1

p , thus

ε′ := ε
p

2p−1 6 π
4 . Substituting ε′ = ε

p
2p−1 into (3.1), and notice (2.1) and (3.14)

we have, for any π 6 r 6 π + δ + Λ−1δ(6 π + 2),

A(r)
1

2p−1 6

(
12

π

) 1
2p−1

(
√

2ε′)
n−1
2p−1 [volg̃(By(R))]

1
2p−1

+ C1(n, p)(π + 2)

[
1

volg̃(By(R))

∫
By(R)

ρp1dVg̃

] 1
2p−1

[volg̃(By(R))]
1

2p−1 ε′
n−2p
2p−1

6

[(
12

π

) 1
2p−1

(
√

2)
n−1
2p−1 + C1(n, p)(π + 2)

]
[volg̃(By(R))]

1
2p−1 ε

p(n−1)

(2p−1)2 ,
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which together with (3.9) yields

(3.15) A(r) 6 C2(n, p)volg̃(By(R))ε
p(n−1)
2p−1 , π 6 r 6 π + δ + Λ−1δ.

By (3.14) and (3.15) we have

volg̃(By(Λ−1δ)) 6 volg̃(Bx(π + δ + Λ−1δ)\Bx(π))

=

∫ π+δ+Λ−1δ

π

A(r)dr

6 2C2(n, p)volg̃(By(R))ε
p(n−1)
2p−1 ,

which together with (2.1) yields

(3.16)
volmin(By(Λ−1δ))

volmin(By(R))
6 Λn

volg̃(By(Λ−1δ))

volg̃(By(R))
6 2ΛnC2(n, p)ε

p(n−1)
2p−1 .

On the other hand, (3.11) and (3.13) implies that

ε :=

(∫
By(R)

(max{n− 1−Ric, 0})pdVmax

volmin(By(R))

) 1
p

6

(
1

3C(n, p,R)

) 2p−1
p

,

thus by Theorem 2.1 we have

volmin(By(Λ−1δ))

volmin(By(R))
>

Λ−nδn

Rn
· Λ−n ·

(
1− 2C(n, p,R)ε

p
2p−1

1− C(n, p,R)ε
p

2p−1

)2p−1

>
δn

RnΛ2n22p−1
,

which together with (3.10) and (3.16) yields

δ 6 Λ3
[
22pC2(n, p)

] 1
n Rε

p(n−1)
n(2p−1) = B(n, p,Λ)ε

p(n−1)
n(2p−1) ,

which contradicts with the assumption δ > B(n, p,Λ)ε
p(n−1)
n(2p−1) . In summary, we

have proved our claim that

dF (x, y) 6 π +B(n, p,Λ)ε
p(n−1)
n(2p−1) 6 π + 0.9 < π + 1

for any x ∈M whenever (3.13) holds. In this situation, we also have dF (y, x) <
Λ(π + 1), and thus dF (x, z) 6 dF (x, y) + dF (y, z) < (1 + Λ)(π + 1) for any

x, z ∈ M . In other words, if (3.13) holds, then M ⊂ Bx((1 + Λ)(π + 1)) ⊂
Bx((1 + Λ)(π+ 1) + Λ−1) = Bx(R) for any x ∈M . Now by the same argument

as above we have dF (x, y) 6 π + B(n, p,Λ)ε
p(n−1)
n(2p−1) for any x, y ∈ M , which

imply that diam(M) 6 π +B(n, p,Λ)ε
p(n−1)
n(2p−1) . �

Lemma 3.3. Let T ⊂M be a star-shaped subset at x such that Bx(R) ⊂ T ⊂
Bx(RT ). If(∫

T
(max{n− 1−Ric, 0})pdVmax

volmin(T )

) 1
p

6

(
1

3C(n, p,RT )

) 2p−1
p

,
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then (∫
Bx(R)

(max{n− 1−Ric, 0})pdVmax

volmin(Bx(R))

) 1
p

6

(∫
T

(max{n− 1−Ric, 0})pdVmax

volmin(T )

) 1
p

· 2
2p−1

p

(
RTΛ

R

)n
p

.(3.17)

Proof. By Theorem 2.1 it is clear that∫
Bx(R)

(max{n− 1−Ric, 0})pdVmax

volmin(Bx(R))

6

∫
T

(max{n− 1−Ric, 0})pdVmax

volmin(Bx(R))

=

∫
T

(max{n− 1−Ric, 0})pdVmax

volmin(T )
· volmin(T )

volmin(Bx(R))

6

∫
T

(max{n− 1−Ric, 0})pdVmax

volmin(T )
· 22p−1 · Λn · R

n
T

Rn
,

which clearly implies (3.17). �

4. The proof of Main Result

In this section we shall complete the proof of the main result of this paper.
Let us first prove the following.

Theorem 4.1. Let (M,F ) be a forward complete Finsler n-manifold with finite
uniformity constant µF := Λ2. If

∫
M

(max{n− 1−Ric, 0})pdVmax is finite for
some p > n/2, then the minimal volume volmin(M) of M is finite. In this
situation, there exists a positive constant A2(n, p,Λ) such that when

(4.1) ε =

(∫
M

(max{n− 1−Ric, 0})pdVmax

volmin(M)

) 1
p

6 A2(n, p,Λ),

then M is compact with diam(M) 6 π + B(n, p,Λ)ε
p(n−1)
n(2p−1) , here B(n, p,Λ) is

given in Lemma 3.2.

Proof. Let R = R(Λ) = (Λ + 1)(π + 1) + Λ−1 be given as in Lemma 3.2, and
let {Bxi(R)}i∈I be a maximal family of disjoint geodesic balls in M . It is
not difficult to verify that the Dirichlet domains Ti = {y ∈ M : dF (xi, y) <
dF (xj , y),∀j 6= i} satisfy the following facts:

(1) Bxi
((1 + Λ)R) ⊃ Ti ⊃ Bxi

(R);
(2) Ti is star-shaped at xi;
(3) except for a set of zero measure, M is the disjoint union of the sets Ti.
Let

A2(n, p,Λ)=min

{
A1(n, p,Λ) · 2−

2p−1
p · (Λ(1 + Λ))−

n
p ,
(

1
3C(n,p,(1+Λ)R)

) 2p−1
p

}
,
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here A1(n, p,Λ) is given by Lemma 3.2. Setting

α = inf
i∈I

(∫
Ti

(max{n− 1−Ric, 0})pdVmax

volmin(Ti)

) 1
p

,

then we have ∫
M

(max{n− 1−Ric, 0})pdVmax

=
∑
i

∫
Ti

(max{n− 1−Ric, 0})pdVmax

> αp
∑
i∈I

volmin(Ti) = αpvolmin(M).(4.2)

If α > A2(n, p,Λ), then by (4.2) it is clear that volmin(M) is finite. Elsewhere,
there exists a star-shaped set Ti such that

(4.3)

(∫
Ti

(max{n− 1−Ric, 0})pdVmax

volmin(Ti)

) 1
p

6 A2(n, p,Λ),

which together with (3.17) and the property (1) of Ti yields(∫
Bxi

(R)
(max{n− 1−Ric, 0})pdVmax

volmin(Bxi(R))

) 1
p

6 A2(n, p,Λ) · 2
2p−1

p · (Λ(1 + Λ))
n
p 6 A1(n, p,Λ).

Now by Lemma 3.2 we conclude that M is compact, and thus volmin(M) is
finite. On the other hand, if (4.1) holds, then by (4.2) it follows that α 6
A2(n, p,Λ), and we may argue similarly as above to conclude that M is compact

with diam(M) 6 π +B(n, p,Λ)ε
p(n−1)
n(2p−1) . �

Theorem 4.2. Let (M,F ) be a compact Finsler n-manifold with uniformity
constant µF := Λ2. For any p > n/2 there exists a positive constant A(n, p,Λ)
such that when

(4.4)

(∫
M

(max{n− 1−Ric, 0})pdVmax

volmin(M)

) 1
p

6 A(n, p,Λ),

then the fundamental group π1(M) of M is finite.

Proof. Let

A(n, p,Λ)=min

{
A1(n, p,Λ) · 2−

2p−1
p · (Λ(2 + Λ))−

n
p ,
(

1
3C(n,p,(2+Λ)R)

) 2p−1
p

}
,

here A1(n, p,Λ) and R are given by Lemma 3.2. Notice that A(n, p,Λ) <
A2(n, p,Λ), Theorem 4.1 and (4.4) implies that diam(M) < π + 1 < R. Let

f : (M̃, F̃ ) → (M,F ) be the universal covering space of (M,F ). In order to
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prove the finiteness of π1(M), we need only to prove M̃ is compact. We note

that the uniformity constant of M̃ is just the uniformity constant of M since

f is a local isometry. Fix a base point x̃ ∈ M̃ . Since R >diam(M), by Lemma
2.2 there is a star-shaped subset T at x̃ satisfying Bx̃(R) ⊂ T ⊂ Bx̃((2 + Λ)R)
and

(4.5)

∫
T

(max{n− 1−Ric, 0})pdVmax

volmin(T )
=

∫
M

(max{n− 1−Ric, 0})pdVmax

volmin(M)
.

By (4.4), (4.5) and Lemma 3.3 we see that(∫
Bx̃(R)

(max{n− 1−Ric, 0})pdVmax

volmin(Bx̃(R))

) 1
p

6 A(n, p,Λ) · 2
2p−1

p · (Λ(2 + Λ))
n
p 6 A1(n, p,Λ).

Now by Lemma 3.2 it is clear that M̃ is compact, and thus the theorem is
proved. �

Proof of Main Result. It is the direct consequence of Theorems 4.1 and 4.2. �
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