• Title/Summary/Keyword: P-space

Search Result 2,792, Processing Time 0.025 seconds

[ $L^p$ ] NORM INEQUALITIES FOR AREA FUNCTIONS WITH APPROACH REGIONS

  • Suh, Choon-Serk
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2005
  • In this paper we first introduce a space of homogeneous type X, and then consider a kind of generalized upper half-space $X{\times}(0,\;\infty)$. We are mainly considered with inequalities for the $L^p$ norms of area functions associated with approach regions in $X{\times}(0,\;\infty)$.

  • PDF

A study on upper bounds of the perturbed co-semigroups via the algebraic riccati equation in hilbert space (Hilbert Space에서 대수 Riccati 방정식으로 얻어지는 교란된 Co-Semigroup의 상한에 대한 연구)

  • 박동조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.68-72
    • /
    • 1986
  • Upper bounds of the perturbed Co-semigroups of the infinite dimensional systems are investigated by using the algebraic Riccati equation(ARE). In the case that the solution P of the ARE is strictly positive, the perturbed semigroups are uniformly bounded. A sufficient condition for the solution P to be strictly positive is provided. The uniform boundedness plays an important role in extending approximately weak stability to weak stability on th whole space. Exponential Stability of the perturbed semigroups is studied by using the Young's inequlity. Some further discussions on the uniform boundedness of the perturbed semigroups are given.

  • PDF

(n + 1)-DIMENSIONAL, CONTACT CR-SUBMANIFOLDS OF (n - 1) CONTACT CR-DIMENSION IN A SASAKIAN SPACE FORM

  • Kwon, Jung-Hwan;Pak, Jin-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.3
    • /
    • pp.519-529
    • /
    • 2002
  • In this paper. We Study (n + 1)-dimensional Contact CR-submanifolds of (n - 1) contact CR-dimension immersed in a Sasakian space form M$\^$2m+1/(c) (2m=n+p, p>0), and especially determine such submanifolds under additional condition concerning with shape operator.

SOME NECESSARY AND SUFFICIENT CONDITIONS FOR A FRÉCHET-URYSOHN SPACE TO BE SEQUENTIALLY COMPACT

  • Hong, Woo-Chorl
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.145-152
    • /
    • 2009
  • In this paper, we introduce a new property of a topological space which is weaker than sequential compactness and give some necessary and sufficient conditions for a $Fr{\acute{e}}chet$-Urysohn space with the property to be sequentially compact.

Structure Eigenvectors of the Ricci Tensor in a Real Hypersurface of a Complex Projective Space

  • Li, Chunji;Ki, U-Hang
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.463-476
    • /
    • 2006
  • It is known that there are no real hypersurfaces with parallel Ricci tensor in a nonflat complex space form ([6], [9]). In this paper we investigate real hypersurfaces in a complex projective space $P_n\mathbb{C}$ using some conditions of the Ricci tensor S which are weaker than ${\nabla}S=0$. We characterize Hopf hypersurfaces of $P_n\mathbb{C}$.

  • PDF

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON A FRESNEL TYPE CLASS

  • Chang, Seung Jun;Lee, Il Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.79-99
    • /
    • 2006
  • In this paper, we define a class of functional defined on a very general function space $C_{a,b}[0,T]$ like a Fresnel class of an abstract Wiener space. We then define the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product of functionals on function space $C_{a,b}[0,T]$. Finally, we establish some relationships between the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $\mathcal{F}(C_{a,b}[0,T])$.

  • PDF

A CLASS OF MAPPINGS BETWEEN Rz-SUPERCONTINUOUS FUNCTIONS AND Rδ-SUPERCONTINUOUS FUNCTIONS

  • Prasannan, A.R.;Aggarwal, Jeetendra;Das, A.K.;Biswas, Jayanta
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.575-590
    • /
    • 2017
  • A new class of functions called $R_{\theta}$-supercontinuous functions is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity, which already exist in the literature, is elaborated. The class of $R_{\theta}$-supercontinuous functions properly contains the class of $R_z$-supercontinuous functions [39] which in turn properly contains the class of $R_{cl}$-supercontinuous functions [43] and so includes all cl-supercontinuous (clopen continuous) functions ([38], [34]) and is properly contained in the class of $R_{\delta}$-supercontinuous functions [24].

HOLOMORPHIC EMBEDDINGS OF STEIN SPACES IN INFINITE-DIMENSIONAL PROJECTIVE SPACES

  • BALLICO E.
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.129-134
    • /
    • 2005
  • Lpt X be a reduced Stein space and L a holomorphic line bundle on X. L is spanned by its global sections and the associated holomorphic map $h_L\;:\;X{\to}P(H^0(X, L)^{\ast})$ is an embedding. Choose any locally convex vector topology ${\tau}\;on\;H^0(X, L)^{\ast}$ stronger than the weak-topology. Here we prove that $h_L(X)$ is sequentially closed in $P(H^0(X, L)^{\ast})$ and arithmetically Cohen -Macaulay. i.e. for all integers $k{\ge}1$ the restriction map ${\rho}_k\;:\;H^0(P(H^0(X, L)^{\ast}),\;O_{P(H^0(X, L)^{\ast})}(k)){\to}H^0(h_L(X),O_{hL_(X)}(k)){\cong}H^0(X, L^{\otimes{k}})$ is surjective.

[Lp] ESTIMATES FOR A ROUGH MAXIMAL OPERATOR ON PRODUCT SPACES

  • AL-QASSEM HUSSAIN MOHAMMED
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.405-434
    • /
    • 2005
  • We establish appropriate $L^p$ estimates for a class of maximal operators $S_{\Omega}^{(\gamma)}$ on the product space $R^n\;\times\;R^m\;when\;\Omega$ lacks regularity and $1\;\le\;\gamma\;\le\;2.\;Also,\;when\;\gamma\;=\;2$, we prove the $L^p\;(2\;{\le}\;P\;<\;\infty)\;boundedness\;of\;S_{\Omega}^{(\gamma)}\;whenever\;\Omega$ is a function in a certain block space $B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ (for some q > 1). Moreover, we show that the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is nearly optimal in the sense that the operator $S_{\Omega}^{(2)}$ may fail to be bounded on $L^2$ if the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is replaced by the weaker conditions $\Omega\;{\in}\;B_q^{(0,\varepsilon)}(S^{n-1}\;\times\;S^{m-1})\;for\;any\;-1\;<\;\varepsilon\;<\;0.$

ON A GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION AND STATISTICAL CONVERGENCE

  • Bataineh Ahmad H.A.
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.261-272
    • /
    • 2006
  • In this paper, we define the sequence spaces: $[V,{\lambda},f,p]_0({\Delta}^r,E,u),\;[V,{\lambda},f,p]_1({\Delta}^r,E,u),\;[V,{\lambda},f,p]_{\infty}({\Delta}^r,E,u),\;S_{\lambda}({\Delta}^r,E,u),\;and\;S_{{\lambda}0}({\Delta}^r,E,u)$, where E is any Banach space, and u = ($u_k$) be any sequence such that $u_k\;{\neq}\;0$ for any k , examine them and give various properties and inclusion relations on these spaces. We also show that the space $S_{\lambda}({\Delta}^r, E, u)$ may be represented as a $[V,{\lambda}, f, p]_1({\Delta}^r, E, u)$ space. These are generalizations of those defined and studied by M. Et., Y. Altin and H. Altinok [7].