• 제목/요약/키워드: P-regular space

검색결과 28건 처리시간 0.021초

MINIMAL P-SPACES

  • Arya, S.P.;Bhamini, M.P.
    • Kyungpook Mathematical Journal
    • /
    • 제27권1호
    • /
    • pp.27-33
    • /
    • 1987
  • Minimal s-Urysohn and minimal s-regular spaces are studied. An s-Urysohn (respectively, s-regular) space (X, $\mathfrak{T}$) is said to be minimal s-Urysohn (respectively, minimal s-regular) if for no topology $\mathfrak{T}^{\prime}$ on X which is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) is s-Urysohn (respectively s-regular). Several characterizations and other related properties of these classes of spaces have been obtained. The present paper is a study of minimal P-spaces where P refers to the property of being an s-Urysohn space or an s-regular space. A P-space (X, $\mathfrak{T}$) is said to be minimal P if for no topology $\mathfrak{T}^{\prime}$ on X such that $\mathfrak{T}^{\prime}$ is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) has the property P. A space X is said to be s-Urysohn [2] if for any two distinct points x and y of X there exist semi-open set U and V containing x and y respectively such that $clU{\bigcap}clV={\phi}$, where clU denotes the closure of U. A space X is said to be s-regular [6] if for any point x and a closed set F not containing x there exist disjoint semi-open sets U and V such that $x{\in}U$ and $F{\subseteq}V$. Throughout the paper the spaces are assumed to be Hausdorff.

  • PDF

SPACE OF HOMEOMORPHISMS UNDER REGULAR TOPOLOGY

  • Mir Aaliya;Sanjay Mishra
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1299-1307
    • /
    • 2023
  • In this paper, we attempt to study several topological properties for the function space H(X), space of self-homeomorphisms on a metric space endowed with the regular topology. We investigate its metrizability and countability and prove their coincidence at X compact. Furthermore, we prove that the space H(X) endowed with the regular topology is a topological group when X is a metric, almost P-space. Moreover, we prove that the homeomorphism spaces of increasing and decreasing functions on ℝ under regular topology are open subspaces of H(ℝ) and are homeomorphic.

REGULAR CLOSED BOOLEAN ALGEBRA IN SPACE WITH ONE POINT LINDELOFFICATION TOPOLOGY

  • Gao, Shang-Min
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제7권1호
    • /
    • pp.61-69
    • /
    • 2000
  • Let($X^{\ast},\tau^{\ast}$) be the space with one point Lindeloffication topology of space (X,$\tau$). This paper offers the definition of the space with one point Lin-deloffication topology of a topological space and proves that the retraction regu-lar closed function f: $K^{\ast}(X^{\ast}$) defined f($A^{\ast})=A^{\ast}$ if p $\in A^{\ast}$ or ($f(A^{\ast})=A^{\ast}-{p}$ if $p \in A^{\ast}$ is a homomorphism. There are two examples in this paper to show that the retraction regular closed function f is neither a surjection nor an injection.

  • PDF

On Generalized Quasi-preclosed Sets and Quasi Preseparation Axioms

  • Park, Jin Han;Pyo, Yong Soo
    • 호남수학학술지
    • /
    • 제25권1호
    • /
    • pp.141-152
    • /
    • 2003
  • In this paper, we define generalized quasi-preclosed sets and gqp-closed functions and obtain some new characterizations of quasi P-normal spaces and quasi P-regular spaces due to Tapi et al. [9,11]. It is shown that the pairwise continuous pre gqp-closed (resp. pairwise preopen pre gqp-closed) surjective image of quasi P-normal (resp. quasi P-regular) space is quasi P-normal (resp. quasi P-regular).

  • PDF

FIXED POINTS OF A CERTAIN CLASS OF ASYMPTOTICALLY REGULAR MAPPINGS

  • Jung, Jong-Soo;Thakur, Balwant-Singh;Sahu, Daya-Ram
    • 대한수학회보
    • /
    • 제37권4호
    • /
    • pp.729-741
    • /
    • 2000
  • In this paper, we study in Banach spaces the existence of fixed points of asymptotically regular mapping T satisfying: for each x, y in the domain and for n=1, 2,…, $$\parallelT^nx-T^ny\parallel\leq$\leq$a_n\parallelx-y\parallel+b_n (\parallelx-T^nx\parallel+\parallely-T^ny\parallely)$$ where $a_n,\; b_n,\; C_n$ are nonnegative constants satisfying certain conditions. We also establish some fixed point theorems for these mappings in a Hibert space, in L(sup)p spaces, in Hardy space H(sup)p, and in Soboleve space $H^{k,p} for 1<\rho<\infty \; and \; k\geq0$. We extend results from papers [10], [11], and others.

  • PDF

HEIGHT BOUND AND PREPERIODIC POINTS FOR JOINTLY REGULAR FAMILIES OF RATIONAL MAPS

  • Lee, Chong-Gyu
    • 대한수학회지
    • /
    • 제48권6호
    • /
    • pp.1171-1187
    • /
    • 2011
  • Silverman [14] proved a height inequality for a jointly regular family of rational maps and the author [10] improved it for a jointly regular pair. In this paper, we provide the same improvement for a jointly regular family: let h : ${\mathbb{P}}_{\mathbb{Q}}^n{\rightarrow}{{\mathbb{R}}$ be the logarithmic absolute height on the projective space, let r(f) be the D-ratio of a rational map f which is de ned in [10] and let {$f_1,{\ldots},f_k|f_l:\mathbb{A}^n{\rightarrow}\mathbb{A}^n$} bbe finite set of polynomial maps which is defined over a number field K. If the intersection of the indeterminacy loci of $f_1,{\ldots},f_k$ is empty, then there is a constant C such that $ \sum\limits_{l=1}^k\frac{1}{def\;f_\iota}h(f_\iota(P))>(1+\frac{1}{r})f(P)-C$ for all $P{\in}\mathbb{A}^n$ where r= $max_{\iota=1},{\ldots},k(r(f_l))$.

A CLASS OF MAPPINGS BETWEEN Rz-SUPERCONTINUOUS FUNCTIONS AND Rδ-SUPERCONTINUOUS FUNCTIONS

  • Prasannan, A.R.;Aggarwal, Jeetendra;Das, A.K.;Biswas, Jayanta
    • 호남수학학술지
    • /
    • 제39권4호
    • /
    • pp.575-590
    • /
    • 2017
  • A new class of functions called $R_{\theta}$-supercontinuous functions is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity, which already exist in the literature, is elaborated. The class of $R_{\theta}$-supercontinuous functions properly contains the class of $R_z$-supercontinuous functions [39] which in turn properly contains the class of $R_{cl}$-supercontinuous functions [43] and so includes all cl-supercontinuous (clopen continuous) functions ([38], [34]) and is properly contained in the class of $R_{\delta}$-supercontinuous functions [24].

REGULAR BRANCHED COVERING SPACES AND CHAOTIC MAPS ON THE RIEMANN SPHERE

  • Lee, Joo-Sung
    • 대한수학회논문집
    • /
    • 제19권3호
    • /
    • pp.507-517
    • /
    • 2004
  • Let (2,2,2,2) be ramification indices for the Riemann sphere. It is well known that the regular branched covering map corresponding to this, is the Weierstrass P function. Lattes [7] gives a rational function R(z)= ${\frac{z^4+{\frac{1}{2}}g2^{z}^2+{\frac{1}{16}}g{\frac{2}{2}}$ which is chaotic on ${\bar{C}}$ and is induced by the Weierstrass P function and the linear map L(z) = 2z on complex plane C. It is also known that there exist regular branched covering maps from $T^2$ onto ${\bar{C}}$ if and only if the ramification indices are (2,2,2,2), (2,4,4), (2,3,6) and (3,3,3), by the Riemann-Hurwitz formula. In this paper we will construct regular branched covering maps corresponding to the ramification indices (2,4,4), (2,3,6) and (3,3,3), as well as chaotic maps induced by these regular branched covering maps.

ON MIXED PRESSURE-VELOCITY REGULARITY CRITERIA FOR THE 3D MICROPOLAR EQUATIONS IN LORENTZ SPACES

  • Kim, Jae-Myoung;Kim, Jaewoo
    • 충청수학회지
    • /
    • 제34권1호
    • /
    • pp.85-92
    • /
    • 2021
  • In present paper, inspired by the recently paper [1], we give the mixed pressure-velocity regular criteria in view of Lorentz spaces for weak solutions to 3D micropolar equations in a half space. Precisely, if (0.1) ${\frac{P}{(e^{-{\mid}x{\mid}^2}+{\mid}u{\mid})^{\theta}}{\in}L^p(0,T;L^{q,{\infty}}({\mathbb{R}}^3_+))$, p, q < ∞, and (0.2) ${\frac{2}{p}}+{\frac{3}{q}}=2-{\theta}$, 0 ≤ θ ≤ 1, then (u, w) is regular on (0, T].

A NEW BANACH SPACE DEFINED BY ABSOLUTE JORDAN TOTIENT MEANS

  • Canan Hazar Gulec;Ozlem Girgin Atlihan
    • Korean Journal of Mathematics
    • /
    • 제32권3호
    • /
    • pp.545-560
    • /
    • 2024
  • In the present study, we have constructed a new Banach series space |𝛶r|up by using concept of absolute Jordan totient summability |𝛶r, un|p which is derived by the infinite regular matrix of the Jordan's totient function. Also, we prove that the series space |𝛶r|up is linearly isomorphic to the space of all p-absolutely summable sequences ℓp for p ≥ 1. Moreover, we compute the α-, β- and γ- duals of this space and construct Schauder basis for the series space |𝛶r|up. Finally, we characterize the classes of infinite matrices (|𝛶r|up, X) and (X, |𝛶r|up), where X is any given classical sequence spaces ℓ, c, c0 and ℓ1.