J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math.
7(2000), no. 1, 61-69

REGULAR CLOSED BOOLEAN ALGEBRA IN SPACE WITH
ONE POINT LINDELOFFICATION TOPOLOGY

SHANGMIN CAO

ABSTRACT. Let (X*,7*) be the space with one point Lindel6flication topology of
space (X,7). This paper offers the definition of the space with one point Lin-
deloffication topology of a topological space and proves that the retraction regu-
lar closed function f : K*(X*) — K(X) defined by f(A*) = A* if p g A* or
f(A*) = A* — {p} if p € A* is a homomorphism. There are two examples in this
paper to show that the retraction regular closed function f is neither a surjection nor
an injection.

1. One point Lindel6ffication topology

Definition 1. Let (X,7) be an arbitrary topological space. A subset A of X is
called Lindeldf subset if A as the subspace of (X,7) is a Lindeldf space (see Dow
and Vermeer [1]). In (X, 7), the family of closed sets is

Q={B:BCX and X -Ber}
and the family of Lindeldf subsets is
L={A:ACX and Ais a Lindelof subset in (X, 7)}.

We assume that p is a point not in X and X* = X U{p}. Suppose that 7* = 7Un;
where 71 = {E: F C X* and X* — E € QN L}. (X*,7*) is called the space with
one point Lindeldffication topology of topological space (X, ).

It is clear that X* € 7y since § € QN L. From Definition 1 one can assert
that the family of closed sets in (X*,7*) is Q* = {A* : A* = AU {p} where
AeQlUu{B*:B* € QnL}.
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For any z € X, we denote the neighborhood system of z in (X, 7) by =,.

2. Lemmas and propostions

Lemma A. Foranyz € X, U* € B, or U* — {p} € E; if and only if U* is a
neighborhood of x.

Proof. If U* is a neighborhood of z in (X*,7*), then U* € E, or 3A* € 1, such
that z € A* C U*. In the second case, there is B € QN L satisfying A* = X* - B so
z€ X —BC A* CU* It follows that U* — {p} € E,. According to the definition
of neighborhood, the converse is obvious. O

Lemma B. For any U* C X*, if p € U* € E}, then there is A € 7 such that
AcCcU*—{p}.

-Proof. If U* € Ej;, then there is A* € 7 such that p € A* C U” so there is
B € QN L satisfying X* — A* = B. It follows that X — B € T and X — B =
A*—{pycU*—{p}. O

The neighborhood system for any £ € X in (X*,7*) can be also denoted by

= — 20 =l =2 =0 ; i = i
Er =E) UZ; UEZ, where E) is the neighborhood system =, for z in (X, 1),

Bl ={Uu{p}:Uc€E,}

and
Z2 = {U*:3A* € 1y such that z € A* CU* C X*}.

The neighborhood system for p is Z} = {U* : 3A* € 1, such that A* C U* C X*}.
That is, for any U* € E7, there is a set B € 0N L such that X* —U* C B.

Throughout this paper, we denote the closure and the interior of set A in (X, 1)
by ¢(A) and i(A) respectively. The closure and the interior of set A in (X*,7*) are
represented by c*(A) and ¢*(A) respectively. The family of regular closed sets in
(X,7) and in (X*,7*) are denoted by K(X) and K*(X*) respectively, that is, for
any A € K(X), c(i(A)) = A and for any A* € K*(X*), c*(i*(A*)) = A*.

For any A,B € K(X) we define A® B = c¢(i(AN B)), A" = c(i(X ~ A)) and
AoB=(A0B)U(B®A). In order to distinguish an operation in K*(X*) from
in K(X), we write A® B for A,B € K(X) and the operation ® is operated in
K(X), A®O* B for A, B € K*(X*) and the operation in K*(X*), A" = ¢(i(X — A)),
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Al = c*(i*(X*—A)), AoB = (A®B')U(B®A’') and Ao* B = (A®* B.)U(BO* A4.),
etc.

Proposition 1. ¢*(A4) = c(A)U{p} f AC X, and, foranyBe QN L, AN (X -
B) # 0.

Proof. According to Dugundji [2, p. 77], c(A) C ¢*(A) since (X, T) is a subspace
of (X*,7*). It is clear that p ¢ Aif AC X. For any U* € E5, U"NA # (¢ since
AN(X — B) # 0 for any B € 2N L. It follows that p € ¢*(A).On the other hand,
for any z € X, if z & c(A), then there is U € Z2 such that UN A =0 so z & c*(A)
because Z2 C Z%. From above one can assert that ¢*(A) = c(4) U {p}. O

Corollary 1. For any A C X, p & A and the following two conclusions hold:

(1) c*(A) =c(A) if 3B € QN L such that AN (X — B) = 0.
(2) c*(A)=c(A)U{p} f AN(X — B) # 0 for any B€E QN L.

An apparent fact is ¢*(X) = X* if (X, 7) is not a Lindelof space. In this case
(X*,7*) is right the one point Lindeldffication of (X, 7) from Definition 1. So in
the rest of this paper we assume that (X, 7) is always a non-Lindel6f space unless
stated otherwise.

Proposition 2. Ifp € A, then c*(A) = ¢(A — {p}) U {p}.

Proof. Tt is clear that c*({p}) = {p} since X* — {p} = X € 7. So c*(4) =
c*(A—{p})Uc*({p}) = c(A—{p}) U {p} from Corollary 1. O
Corollary 2. For any A C X, the folowings are hold.

(1) Ifp ¢ A and 3B € QNL such that AN(X —B) =0, then c*(A) = c(A—{p});
(2) IfpecAorpg Aand AN(X — B) #0 for any B€ QN L, then c*(A) =
c(4—{p}) U{p}.

Proposition 3. For any A C X, i*(A) = i(4).

Proof. Since p € X* — A = (X — A)U{p}, i*(4) = X* = c*((X - A) U {p}) =
X* ~ (e(X ~ A)U {p}) = i(A) from Proposition 2. [
Proposition 4. If p € A C X*, then the folowings are hold.

(1) *(A) = i(A—{p}) U {p} provided that IB € QN L such that AN(X—-B) = 0.
(2) i*(A) =i(A — {p}) provided that AN (X — B) # 0 for any B € QN L.
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Proof. 1t is clear that p @ X* — Asincepe Aso X* —A=X — (4 - {p}).
(1) Since there is B € QN L satisfying AN (X — B) = §, i*(A) = X* — ¢*(X —
[A={p}]) = X* — (X — [A - {p}]) = i(A - {p}) U {p} from (1) of Corollary 1.
(2) Since AN(X —B)# @ forany B€ QN L,

C(A) = X" — (X - [A-{p}]) = X" = {c(X ~ [A~ {p})) U {p}} = i(4A - {p})

from (2) of Corollary 1. O

Corollary 3. For any A C X*, the folowings are hold.
(1) Ifp € Aand 3B € QN L such that AN (X — B) = 0, then i*(4) =

i(A—{p})uip};
(2) fpgAorpc Aand AN (X — B) #0 for any B € QN L, then i*(A) =

i(A—{p}).

Proposition 5. For any A C X*, the folowings are hold.

(1) e*(i*(A)) = c(i(A))U{p} if p & A and for any B € QNL, i(A)N(X — B) 74— 0.

(2) c*(i*(A)) = c(i(A)) if p¢ A and there is BE QN L, i(A)N(X — B) =

(38) c*(1*(A4)) = c(i(A—{p}))U{p} if p € A and there is B € QNL, i(A- {p})
(X —B)=0.

(4) e*(i*(A)) = c(i(A—{p})) if p € A and for any B € QN L, i(A - {p}) N
(X - B)

Proof. (1) Since p ¢ A, p ¢ i(A) and i*(4) = i(A) from Proposition 3. So
c*(i*(A)) = c*(i(A)) = c(i(A)) U {p} according to (2) of Corollary 2.

(3) Since p € A, i*(A) = i(A—{p})U{p} from (1) of Proposition 4. It is obvious
that p ¢ i(A — {p}). So c*(i"(4)) = c*(i(A — {p})) U {p} = c(i(4 — {p})) U {p}
according to (1) of Corollary 2. :

The proofs for (2) and (4) are similar with that for (1) and (3) respectively. O

Proposition 6. Ifp ¢ A and A € K*(X*), then A € K(X).

Proof According to (1) and (2) of Proposition 5, A = ¢(i(4)) since p € A and
=c*(i*(A)) from A € K*(X*). O

Proposition 7. Ifp € A* € K*(X*), then A* — {p} € K(X).

Proof. From (3) and (4) of Proposition 5, A* — {p} = c(i(A* — {p})) so A* — {p} €
K(X). O
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Proposition 8. If A € K(X), then A € K*(X*) and AU {p} € K*(X*) if and
only if there is B € QN L, such that i(A)N (X — B) = 0.

Proof. Tt is easy to see that ¢*(i*(A4)) = A and ¢*(i*(A U {p})) = AU {p} from (2)
and (3) of Proposition 5 respectively. O

Proposition 9. {p} € K*(X*) if and only if (X, 1) is a Lindeldf space.

Proof. 1If {p} € K*(X*), then c*(3*({p})) = {p}. It follows that i*({p}) = {p} so
{p} is an open set in (X* 7*). Moreover, X = X* — {p} € @NL so X is a Lindel6f
space.

Conversely, if X is a Lindeldf space, then {p} is an open and closed set in (X*,7*)
so c*(i*({p})) = {p}. That is, {p} € K*(X*). O

Proposition 10. X € K*(X*) if and only if (X, 1) is a Lindeldf space.

Proof. If X € K*(X*), then there is B € QN L satisfying «(X)N(X — B) = 0
from Proposition 5 so X € B. On the other hand, B C X. Finally, X = Bis a
Lindelof set in (X, 7). Conversely, if (X, 7) is a Lindelof space, then X € QN L
so X is a closed set in (X*,7*). Since X € 7 C 7*, X is open in (X*,7*). Hence
XeK«(X*). O

Corollary 4. {p} € K*(X*) if and only if X € K*(X*).

According to Kuratowski and Mostowski [3, p. 39], K(X) is a Boolean algebra
with a unit with respect to the operations o and @ as well as that K*(X*) a
Boolean algebra with a unit with respect to the operations o* and ®*. It is easy to
see that K(X) is a sub-algebra of K*(X*) if and only if X is a Lindel6f space from
Propositions 6, 7 and 10.

Proposition 11. If A C X and A* = AU {p} then

(1) (A*), = A" U{p} provided that i(X — A)N(X — B) # 0 for any B€ QN L;
(2) (A*), = A’ provided that there is B € QNL satisfying i( X —A)N(X~B) = §;
(3) A= 'U{p} provided that there is B€ QNL satisfying i(X — A)N(X —B)=0;
(4) A, = A’ provided that i(X — A)N (X — B) #0 for any B€ QN L.

Proof. (1) From (1) of Proposition 5, (A*), = ¢*(s*(X*—A4*)) = c(i(X—-A)U{p} =
A" U {p}.
(2) From (2) of Proposition 5, (A*), = ¢*(i*(X* — A*)) = c(i(X — A)) = A'.
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(3) From (3) of Proposition 5, A, = ¢*(i*(X* — A*)) = c(i(X — A)) U {p} =

A'U {p}.
(4) From (4) of Proposition 5, A, = c*(i*(X* — A)) =c(i(X —A))=A". O

3. The retraction regular closed function

Definition 2. The retraction regular closed function f : K*(X*) — K(X) is de-
fined for any A* € K*(X*) by f(A*) = A* if p ¢ A* or f(A*) = A* — {p} if
pE A

Proposition 12. Ifp € A* € K*(X*), then f((A*).) = (f(4%))".

Proof. Let A C X and A* = AU{p}. Iffor any B € QNL, i(X - A)N(X - B) #90,
then f((A*),) = f(A'U{p}) = A" = (f(A*)) from (1) of Proposition 11 and
Definition 2. On the other hand, if there is B € QN L satisfying (X —A)N(X—-B) =
0, then f((A*), = f(A") = A’ = (f(A*))' from (2) of Proposition 11 and Definition
2. 0

Proposition 13. Ifp & A € K*(X*), then f(A.) = (f(4)).

Proof. From (3) of Proposition 11 and Definition 2, if there is B € 2N L satisfying
i(X —A)N (X — B) =0, then f(A,) = f(A"U{p}) = A" = (f(4))'. On the other
hand, if for any B € QN L, (X —A)N(X — B) # 0, then f(A,) = f(A)=A"=
(f(A)) from (4) of Proposition 11 and Definition 2. O
Corollary 5. For any A* € K*(X*), f((A*),) = (f(A"))".
Proposition 14. For any A*, B* € K*(X*),
(1) If p € A* — B* and for any C € QN L, i(A*NB*)N(X — C) # 0, then
A* 0" B* = (4 — {p}) ® B*) U {p};
(2) Ifp € B* — A* and there is C € QN L satisfying i(A*NB*)N(X - C) =0,
then A* ®* B* = A* © (B* — {p});
(3) If pe A* N B* and for any C € QN L, i((A* N B*) — {p}) N(X - C) #0,
then A* ©* B* = (A" — {p}) © (B* — {p});
(4) Ifp € A*NB* and there is C € QNL satisfying i((A*NB*)—{p})N(X -C) =0,
then A* ©* B* = ((4* - {p}) © (B* — {p})) U {p};
(5) If p ¢ A* UB* and for any C € QN L, i((A*NB*))N(X - C) # 0, then
A* ©@* B* = (A* © B*) U {p},



REGULAR CLOSED BOOLEAN ALGEBRA 67

(6) If p ¢ A*U B* and there is C € QN L satisfying i(A*NB*)N(X - C) =0,
then A* ®* B* = A* ® B*.

Proof. (1) From (1) of Proposition 5, A* ©* B* = c(i((A* — {p}) N B*)) U {p}.
(2) From (2) of Proposition 5, A* ®* B* = c¢(i(A* N (B* — {p})))-
(3) From (4) of Proposition 5, A* ®* B* = c(i((4* N B*) — {p})) = c(i((A* -
{p}) N (B* —{p})))- |
(4) From (3) of Proposition 5, A* ©* B* = c(i((A*NB*) —{p})) U{p} = c(i((4* -
{p}) N (B~ - {p}))).
(5) From (1) of Proposition 5, since p ¢ A*NB*, A*©®* B* = c(i(A*NB*))U{p}.
(6) From (2) of Proposition 5, A* ®* B* = c(i(A* N B*)). O

Proposition 15. For any A*, B* € K*(X*), f(A* ©* B*) = f(A*) © f(B").

Proof. In order to reduce the length of the proof, we call
W(A*NB)N(X-C)=0 (*)

the equality (*) brifly. The situation of the proof can be divided into the following
eight cases:

p € A* — B*, for any C € QN L the equality (*) does not hold.
p € A* — B*, there is C € QN L satisfying the equality (*).
p € B* — A*, for any C € 2N L the equality (*) does not hold.
p € B* — A*, there is C € QN L satisfying the equality (*).
p € A* N B*, for any C € QN L the equality (*) does not hold.
p € A* N B*, there is C € QN L satisfying the equality (*).
p & A* U B*, for any C € QN L the equality (*) does not hold.
8. p & A* U B*, there is C € QN L satisfying the equality (*).

No g w

The proof for each case is simple from Proposition 14 so it is omitted. O
Proposition 16. For any A*, B* € K*(X*), f(A*U B*) = f(A*)U f(B*).
Proof. It is easy to check the equality from Definition 2. O
Proposition 17. For any A*, B* € K*(X*), f(A* o* B*) = f(A*) o f(B*).

Proof. Tt is the result of calculating from Propositions 16 and 15 and Corollary
5. [

From above we obtain the following theorem.
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Theorem 1. The retraction regular closed function f : K*(X*) — K(X) defined
for any A* € K*(X*) by f(A*) = A* if p &€ A* or f(A*) = A* — {p} if p € A*
from the regular closed algebra K*(X*) of the space with one point Lindeloffication
topology into that algebra K(X) of the space (X, 7) is a homomorphism.

Proposition 18. Retraction regular closed function f is a surjective homomor-
phism if and only if for any A € K(X), there exists B € QN L satisfying i(A) N
(X - B)=0.

Proof. Tt is obvious from the theorem, Proposition 8 and Definition 2. O

Definition 3. Let P = {(z,y) : z,y € R,y > 0} be the open upper half plane with
the Euclidean topology o and Ry = {(z,0) : € R} the real axis. The topology T on
X = PUR; is generated by adding to o all sets of the form {(z,0)}U(PNU) where
U is a Euclidean neighborhood of (z,0) in the plane. The topological space (X, 1)
is called the space with half-disc topology (see Steen and Seebach [3, p. 96-97]).

Definition 4. Let (X,7) be the space with half-disc topology, ¢ a point not in
X and X* = X U {q}. Suppose that 7* = 17U where ; = {F : E C X* and
X*—E € QN L}. The topological space (X*,7*) is called the space with one point
Lindeloflication topology of the space with half-disc topology.

Example 1. The retraction regular closed function f may be not surjective homo-
morphism. Let (X*,7*) be the space with one point Lindeléffication topology of
space (X, 7) with half-disc topology. If

1
n

~ 1
A={(z,y):z,ye R, 0<y<1,z€ U[n——rz,n+ 1}
n=1

then A € K(X) from Definition 3 and for any B € Q N L the equality i(4) N
(X — B) = 0 does not hold. So there is no A* € K*(X*) satisfying f(4*) = A
from Proposition 8, where A is a closed and non-Lindeldf subset in (X, 7) and not
a closed set in (X*,7*). Hence the retraction regular closed function f is not a

surjective homomorphism.
Proposition 19. If retraction regular closed function f is a surjective homomor-
phism, then (X, T) is a Lindeldf space.

Proof. Since X € K(X), if f is surjective, then there is B € 2 N L satisfying
X N (X — B) = 0 from Proposition 18. So B = X. That is, X is a Lindelof
space. [
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Example 2. The retraction regular closed function f may be not an injective
homomorphism. Let (X*,7*) be the space with one point Lindel6ffication topology
of space (X, 7) with half-disc topology. If

A={(z,y):z,ye R\ 1<z <2and2<y<3}

and
B={(z,y):z,y€R0<z<3and1<y<4}

then A, B € K(X) from the definition of the space with half-disc topology. Since
BeQnLand i(A)N(X -B) =0, Ac K*(X*) and AU {q} € K*(X*) from
Proposition 8. Finally, f(A) = f(AU{q}) = A, that is, f is not injective.

Proposition 20. For any A C X, A € K*(X*) if and only if AU {p} € K*(X*).

Proof. If A € K*(X*), then ¢*(i*(A)) = A so there is B € 2N L satisfying i(4) N
(X — B) = 0 from Proposition 5. So that ¢*(:*(AU{p})) = AU{p} € K*(X*) from
Proposition 5 again. Since the process of the proof can be inverted, we omit the

proof for the converse. [

From Proposition 20, we can assert that any retraction regular closed function
f from the regular closed Boolean algebra K*(X*) of the space with one point
Lindel6ffication topology into that algebra K(X) of topological space (X, 7) must
not be injective.
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