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ON MIXED PRESSURE-VELOCITY REGULARITY
CRITERIA FOR THE 3D MICROPOLAR EQUATIONS
IN LORENTZ SPACES

JAE-MYoUuNG KiM* AND JAEWOO Kim**

ABSTRACT. In present paper, inspired by the recently paper [1], we
give the mixed pressure-velocity regular criteria in view of Lorentz
spaces for weak solutions to 3D micropolar equations in a half space.
Precisely, if

p oo
(0.1) (=P £ [a]y? © LP(0,T; L"(RY)) ,  p,q < oo,
and
(0.2) 213 9.9, o0<o<u,
p q

then (u,w) is regular on (0, 7.

1. Introduction

This paper is concerned about regularity problem of the weak solu-
tions to the micropolar fluid equations in Ri, which are described by
(1.1)
Ou — (n+ x)Au+ (u-V)u+ VP = 2y rot w,
Ow — kAW + (u- V)w +yVV - w + dxw = 2xrotu, Qr :=R3 x (0, T)
div u = 0.

where u = u(z,t) : Qr — R? w = w(x,t) : Qr — R3 and P =
P(z,t) : Qr — R denote the fluid velocity, the angular velocity of the
fluid particles and pressure fields, respectively. The constant p is the
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kinematic viscosity, x is the vortex viscosity, x and ~ are spin viscosities.
We see the initial and boundary value problem of (1.1), that is,

(1.2) u(r,0) = up(r) and w(z,0) =wo(z), z€R3,
subject to the boundary conditions
(1.3) u-v=0, (Vxu)xv=0, and w =0, on 8Ri,

where v := (0,0, —1) is the outward unit normal vector along IR3 .

The system (1.1) firstly introduced by Eringen [4], represents fluids
consisting essentially of randomly oriented particles suspended in a vis-
cous medium if the deformation of fluid particles is ignored. The model
can explain a phenomenon appearing in a great amount of complex flu-
ids flows such as suspensions, lubricants and liquid crystals (see e.g. [8]
and the references therein). For the existence results for (1.1)—(1.3), we
refer to [5], [7], [8]. The uniqueness of weak solutions have been left the
question open. For Q C R?, it is known that any weak solution becomes
unique and smooth in Qr := Q x (0, T'), provided that the following
invariant condition is satisfied:

(1.4) e DOTINR), S+ =1, g>3.

then (u,w) is a strong solution, which means that (u,w) belong to the
H'-class, that is, L>(0, T; H(Q2)) N L?(0, T; H*(Q)) (see e.g. [3] and
the references therein).

In view of the regularity conditions in Lorentz space, Yuan [11] proved
that a weak solution (u, w) for the equations (1.1) becomes smooth
under the scaling invariant conditions, namely, if one of the following
conditions for v or P is satisfied:

(a) u(x,t) € LI((0,T); LP>°(R3)) for % + % 1 with 3 < p < o0

(b) Vu(z,t) € LI((0,T); LP>°(R3)) for %—i— <2 with 2 < p < oc;

(c) Pz, t) € LI((0,T); LM (R?)) for 2 4+ 3 <2 with § < p < oo;

(d) VP(x,t) € LI((0,T); LP>>(R?)) for 2+ 2 <3 with 1 < p < oo,

After that, Loayza and Rojas-Medar [6] studt regularity results for
weak solutions to the micropolar fluid equations in a 3D bounded do-
main. Precisely, they shown that the weak solution (u,w) is strong on
[0, T] if either w € L*(0,T; L"°(82)) or [[ul| .0 (0,750 (02)) 18 bounded
from above with the relation % + % =1 and r > 3. Recently, Beirao da
Veiga and Yang [1] obtained generalized regular criteria for the mixed
pressure-velocity in Lorentz spaces for Leray-Hopf weak solutions to
3D Navier-Stokes equations, that is w = 0 in the equations (1.1) in
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a bounded domain based on the relation |P| ~ |u|?>. More speaking,
they shown that if

P
1.5 —————— € LP(0,T; LY>°(Q2)), ,q < 00,
and
(1.6) g+§:2—9, 0<6<1,
P g

then w is regular on (0, 7.
In this respect, inspired by [1], our result is stated as follows.

THEOREM 1.1. Let (u,w) be a weak solution to (1.1)—(1.3) with
divergence-free initial data ug,wo € L*(R3) N L*(R%). If the condi-
tion (1.5) with the relation (1.6) is satisfied, then (u,w) is regular on
(0, 7] x R3..

REMARK 1.2. As mentioned in [1], in case of T3, the assumption (1.5)
is equivalent to

P .
(1 +[ul)?
REMARK 1.3. We can know that Yuan’s result in [11] holds for half

space R3 due to representation of pressure term( Lemma 2.3 below).
Since the proof is same to that in [11], we only mention it.

LP(0,T; L9°(T?)).

2. Notations and some auxiliary lemmas

In this section, we introduce the definitions and lemmas used through-
out this paper. We also recall some lemmas which are useful to our
analysis. For p € [1, oo], the notation LP(0,T; X) stands for the set of
measurable functions f(x,t) on the interval (0,7") with values in X and
| f(-,t)||x belonging to LP(0,T).

Next, we remind the definition of a weak solution.

DEFINITION 2.1. (Weak Solutions) Let ug(z),wo(z) € LZ(R3).
A measurable function (u(x,t), w(z,t)) is called a weak solution to the
micropolar equations (1.1)—(1.3) on [0,T), if:

(1)

ula,t) € I([0, T); I2(RL)) 1 I2([0, T); HA(RL)),
and

w(z,t) € L2([0,T); L*(R})) N L*([0,T); H' (RY));
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(2) divu = divb = 0 in the sense of distribution;

3)

T
/O {=(u, 0r )+ (p+x) (Vu, Vo) = (u-Vo, u)+x(Vx o, w) }dr = (ug, ¢(0)),
T
/0 {~(0,0:) + K(V0, V) + 1(divw, dive) + 2x(w, 6)

T
/0 —(u-Vo,w) + x(V x ¢,u) }dr = (wo, $(0)),

for any ¢(z, ) € HI[(0,T); HA(RY) and 6(z ) € H'(0,T); H'(RY)
with ¢(7) = 0 and ¢(T") = 0.

Next, we see some facts on Lorentz spaces. For p,q € [1,00], we
define

> 3 ﬂda %
(v [ it e B 17@) > alFE)" g <o
1fllzrars ) = ‘ .
supal{z € R3 : |f(x)| > a}|r, ¢ = oo
a>0
Furthermore,

LP9(RY) = {f : fis a measurable function on R? and HfHLp,q(R:i) < 00}

Followed in [10], through the real interpolation methods, Lorentz space
LP(RY) is defined by

(2.1) LPA(RY) = (L7 (RY), LP2(RY))a,

with
1 l—«o «
- = +—, 1<p<p<py <o
p D1 b2

We recall the Hélder inequality in Lorentz spaces (see [9]).

LEMMA 2.2. Assume 1 < p1, po < 00, 1 < 1, ¢o < o0 and u €
Lre(RY), v € LP2%(RY). Then uwo € LP*®(RY) with L = L + L

1 1 1 . .
and s ST and the inequality

HUUHLP&‘IB(Ri) < Cllullpra (Ri)H”HLm’fm(Ri)

is valid.

For the pressure quantity, we need the following pressure representa-
tion, see [2, Theorem 2.1].
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LEMMA 2.3. Suppose (u, w, P) are a measurable function and a distri-
bution, respectively, satisfying (1.1)—(1.3) in the sense of distributions.
Then P has the following representation; for almost all time t € (0,T")
3 d? 1

—6;;
Pz, t) = Tufut + — -
(z,1) 3 uzu3+4ﬂ w By:09; |& — ]

Jujui(y, t)dy

in the sense of distributions, where 0;; is the Kronecker delta function.
Here, u*(y) = u(y) for y3 > 0, and

ui(y, t) = wi(y™,t), uz(y,t) = ua(y™ 1), uz(y,t) = —us(y”, ),
for y3 < 0, and y* = (y1,y2, —Y3)-
Lemma 2.3 implies that
1Pl ooy < Cllulfzay, 1<a<oo

Proof of Theorem 1.1
First, we note that from the L?-energy inequality
(2.2)

4 (|u|2+|w[2)dx+2min{u+x,m}/ (1Vuf? + [Vuf?)dz <0
dt Jps, R}

To prove the theorem, it is sufficient to get L*-estimate. Taking the
inner product of the first equation of (1.1) with |u|?u and the second
equation of (1.1) with |w|?w, respectively, and trying the integration by
parts, we obtain
Tl + Nl )+ (a0 [ 1Vululd
4 dt LAR3) LA(R3) 1+ X) s [Vul*|ul"dz
+

1 1
e / V]ul?2da + 4 / Vel?wde + 2 / V]| 2da
2 RY RY 2 Jry

+/<;/ \divw[de+2x/ |w|*dz
R3 R3

+ +

§2/ |P||u|2|Vud$—|—3x/ |w||u]2|Vu\dx+3x/ |u||w|?| Vw|da
B2 RE R?

=+ 11+ I1I,

Applying Holder and Young’s inequalities for T and I11, it follows that

1
3)  11<5x | [VuPlude+ 00l + i),
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and
1 2 2 4 4
) 1< 5y [ [VePlwPde +C0) (el + ).

For I, borrowing the arguments in [1], we let

- P
Vel 4|y, P=—0v
(P + Tul)?

Due to the definition of V', we observe that
V2172 < OO+ [l + [|ul?]72)
and
IVV2[I72 < O+ [lullFe + [Vullze + V]l 22).-

By the interpolation and Sobolev inequalities in Lorentz spaces (2.1),
we have

(2.5)
and
(26) HVQHLOM‘Q,Q S C||V2
where 0 < 01,09 < 1, and
1 1-— (51 (51 1 1-— (52 62
= -, _— = + —_
(2 —a)r 2 6 ar 2 6
With the aid of Lemma 2.2 and Lemma 2.3, we get
(2.7)

_ P “ 2—a(,—|z|? by, 12
1= [, () PP

<IPN 2 P20y 2 V22

VYA,

V2l -2 < OV VA sz < OVl

1]
21V < CIVIIL2IVVEES

,00 ‘

L2a
« 1 1

_|!P||quo|yp||2(2 o lIV2 %z EJFTJF* —1,
< OP|IF 0o 10212 oy, 2 1V | S
< OP|I 0o IV iy 1V Z

21(1=01)(2— 21101(2— 211(1=6 216
< C|IP| 0o V25V w2 02 2 (020 g2 o
< O P ffuce [V R R e e
<wmfﬁﬁf@mﬂp+wwwh%

where we use the inequalities (2.5) and (2.6).
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Due to the definition of V', we know from (2.7)
2a
I < CIP) et 7 (4 JJulfe + llull74)
1
(2.8) O+ JlullZe + IVullz2) + ullVIuf*Z2-
Combining (2.3), (2.4) and (2.8), we finally obtain

d 1
&(Hu”‘i4+ \W\|i4)+(u+x)/( \VU|2\U|2dx+(M+X)/, IV ]ul?*de
RY RY

2
1
+7/ |Vw]2|w\2dx+7/ |V|w|2’2dl’+4l-€/ \divw|2d$+8x/ |w|*dz
R3 2 Jry R3 R3

2a
4 4 D 2—61(2—a)—dzc 4
<C (Il + lollde) + IPI TP (1 + 2 + lul)
+ O+ lulls + IVull3s)
2a
4 D||2—01(2—a)—da
<C(Jlullda + lwlda) + IPIFET 77 (1+ Jullde) + C(1 + [ Vull32),

where we use u € L>°(0,T; L?(R3)) from (2.2). Using Gronwall’s lemma
and the criteria (1.4), we obtain that (u,w) is smooth in R3 x [0,77],
provided that

~ _ 2a
P € [2-512—a)=b3a (O,T; Lq,OO(Ri))’

which is completed the proof.
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