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HEIGHT BOUND AND PREPERIODIC POINTS

FOR JOINTLY REGULAR FAMILIES OF RATIONAL MAPS

Chong Gyu Lee

Abstract. Silverman [14] proved a height inequality for a jointly regular

family of rational maps and the author [10] improved it for a jointly reg-
ular pair. In this paper, we provide the same improvement for a jointly
regular family: let h : Pn

Q → R be the logarithmic absolute height on the

projective space, let r(f) be the D-ratio of a rational map f which is
defined in [10] and let {f1, . . . , fk | fl : An → An} be a finite set of poly-

nomial maps which is defined over a number field K. If the intersection
of the indeterminacy loci of f1, . . . , fk is empty, then there is a constant
C such that

k∑
l=1

1

deg fl
h
(
fl(P )

)
>

(
1 +

1

r

)
f(P )− C for all P ∈ An

where r = maxl=1,...,k (r(fl)).

1. Introduction

Let K be a number field and let h : Pn
K
→ R be the logarithmic absolute

height function on the projective space. If f : Pn
K → Pn

K is a morphism defined
over a number fieldK, then we can make a good estimate of h(P ) with h

(
f(P )

)
.

Define the degree of f to be the number induced by the linear operator f∗ on
Pic(Pn) = Z:

f∗H = deg f ·H on Pic(Pn).

Then, the functorial property of the Weil height machine will prove the North-
cott’s theorem. The author refers [16, Theorem B.3.2] to the reader for the
details of the Weil height machine.

Theorem 1.1 (Northcott [12]). If f : Pn
K → Pn

K is a morphism defined over a
number field K, then there are two constants C1 and C2, which are independent
of point P , such that

1

deg f
h
(
f(P )

)
+ C1 > h(P ) >

1

deg f
h
(
f(P )

)
− C2

Received April 27, 2010; Revised August 9, 2011.
2010 Mathematics Subject Classification. Primary 37P30; Secondary 11G50, 32H50,

37P05.

Key words and phrases. height, rational map, preperiodic points, jointly regular family.

c⃝2011 The Korean Mathematical Society
1171



1172 CHONG GYU LEE

for all P ∈ Pn
K
.

If f is not a morphism but a rational map, then the functoriality of the Weil
height machine breaks down: the two height functions hf∗H(P ) and hH

(
f(P )

)
are not equivalent. Hence, Northcott’s Theorem is not valid for rational maps
(However, we still have h(P ) > 1

deg f h
(
f(P )

)
−C2 by the triangular inequality.

See [16, Proposition B.7.1]).
For example, consider a polynomial map, one of popular objects in complex

dynamics. Define
f := (f1, . . . , fn) : An

K → An
K ,

where f1, . . . , fn are homogeneous polynomials of degree d. We may consider
f as a rational map on Pn

K : let P ∈ Pn
K . We define f(P ) to be the following

limit value if it exists.
f(P ) := lim

Q→P
Q∈An

K

f(Q).

We call it the meromorphic extension of f . In general, the meromorphic ex-
tension of f is not a morphism. So, we need other way to find an upper bound
of h(P ).

Silverman suggested a way of constructing an upper bound of h(P ) when
we have a special family of polynomial maps.

Definition 1.2. Let S = {f1, . . . , fk | fl : Pn
K

99K Pn
K
} be a finite set of

rational maps defined over a number field K and let I(f) be the indeterminacy
locus of f . We say that S is jointly regular when

k∩
l=1

I(fl) = ∅.

We also say that a finite set of polynomial maps S′ = {g1, . . . , gk | gl : An
K →

An
K} is jointly regular if the set of rational maps

S = {fl : Pn 99K Pn | fl is the meromorphic extension of gl ∈ S′}
is jointly regular.

Theorem 1.3 ([14], Theorem 3). Let {f1, . . . , fk | fl : An
K → An

K} be a jointly
regular family of polynomial maps defined over a number field K. Then, there
is a constant C satisfying

k∑
l=1

1

deg fl
h
(
fl(P )

)
> h(P )− C

for all P ∈ An
K
.

In this paper, we will improve Theorem 1.3 using the D-ratio. The D-ratio
requires new concepts to be defined so that we will state the main theorem
without the definition of the D-ratio first and will introduce the D-ratio in
Definition 2.12 later.
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Theorem 1.4. Let H be a hyperplane of Pn, let An = Pn \ H, let S =
{f1, . . . , fk | fl : An

K → An
K} be a jointly regular family of polynomial maps

defined over a number field K, let r(f) be the D-ratio of f and let r =
maxl=1,...,k (r(fl)). Suppose that S has at least two elements. Then, there
is a constant C satisfying

k∑
l=1

1

deg fl
h
(
fl(P )

)
>

(
1 +

1

r

)
h(P )− C

for all P ∈ An
K
.

This theorem improves Silverman’s result for preperiodic points [14, The-
orem 4], which is exactly same with Theorem 1.5 except the description of
δS .

Theorem 1.5. Let S = {f1, . . . , fk | fl : An
K → An

K} be a jointly regular family
of polynomial maps, let f(fl) be the D-ratio of fl and let Φ be the monoid of
polynomial maps generated by S. Define

δS :=

(
1

1 + 1/r

) k∑
l=1

1

deg fl
,

where r = maxl=1,...,k

(
r(fl)

)
.

If δS < 1, then

Preper(Φ) :=
∩
f∈Φ

Preper(f) ⊂ An
K

is a set of bounded height.

From now on, we will let K be a number field, let H be a hyperplane on
Pn and let An = Pn \ H be an affine space. We also let f : An → An be
a polynomial map and let I(f) be the indeterminacy locus of f unless stated
otherwise.

Acknowledgements. It is a part of my Ph. D. dissertation. I would like to
thank my advisor Joseph H. Silverman for his overall advice. Also, thanks to
the referee for his/her priceless help.

2. Preliminaries

We need two main ingredients, the resolution of indeterminacy and the D-
ratio of polynomial maps. For details, the author refers [1] and [3, II.7] for
blowups and the resolution of indeterminacy, and [10] for the D-ratio.

2.1. Blowup and the resolution of indeterminacy

We have the general theorem of the resolution of indeterminacy, which is a
corollary of the theorem of the resolution of singularity.
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Theorem 2.1 (Resolution of indeterminacy). Let f : V 99K W be a rational
map between proper varieties such that V is nonsingular. Then there is a

proper nonsingular variety Ṽ with a birational morphism π : Ṽ → V such that

ϕ = f ◦ π : Ṽ →W is a morphism:

Ṽ

π

��

ϕ

��@
@@

@@
@@

@

V
f

//___ W

For notational convenience, we will define the following.

Definition 2.2. Let f : Pn 99K Pn be a rational map and let V be a blowup
of Pn with a birational morphism π : V → Pn. We say that a pair (V, π) is a
resolution of indeterminacy of f if

f ◦ π : V → Pn

is extended to a morphism. And we call the extended morphism ϕ := f ◦ π a
resolved morphism of f .

Using Hironaka’s Theorem (Theorem 2.5), we will observe the relation be-
tween the resolution of indeterminacy and the indeterminacy locus of f .

Definition 2.3. Let π : V → Pn be a birational morphism. Then, we say
that a closed subscheme I of Pn is the center scheme of π if the ideal sheaf S
corresponding to I generates V :

V = Proj

⊕
d≥0

Sd
 .

Definition 2.4. Let π : W → V be a birational morphism. We say that π is a
monoidal transformation if its center scheme is a smooth irreducible subvariety
of V . We say that W is a successive blowup of V if the corresponding birational
map π : W → V is a composition of monoidal transformations.

Theorem 2.5 (Hironaka). Let f : X 99K Y be a rational map between proper
varieties such that V is nonsingular. Then, there is a finite sequence of proper
varieties X0, . . . , Xr such that

(1) X0 = X,
(2) ρi : Xi → Xi−1 is a monoidal transformation,
(3) If Ti is the center scheme of πi, then ρ0 ◦ · · · ◦ ρi(Ti) ⊂ I(f) on X,

(4) f is extended to a morphism f̃ : Xr → Y on Xr,
(5) Consider the composition of all monoidal transformation ρ : Xm →

X. Then, the underlying subvariety of the center scheme T of ρ, a
subvariety made by the zero set of the ideal sheaf corresponding to T ,
is exactly I(f).
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Proof. See [4, Question (E) and Main Theorem II]. □
In § 2.2, we will find a basis of Pic(V ) when (V, π) is a resolution of indeter-

minacy. Especially, we need a basis consisting of irreducible divisors. However,
pullbacks of divisors may not be irreducible because of the exceptional part.
So, we define the proper transformation, which is usually irreducible.

Definition 2.6. Let π : Ṽ → V be a birational morphism with center scheme
I and let D be an irreducible divisor on V . We define the proper transformation
of D by π to be

π#D = π−1(D ∩ U),

where U = V \ Z (I) and Z (I) is the underlying subvariety made by the zero
set of the ideal corresponding to I.

2.2. The An-effectiveness and the D-ratio

The main question of this paper is to find an upper bound of h(P ) using
h
(
fl(P )

)
for jointly regular family {f1, . . . , fk | fl : An → An}. So, we will

consider An as a dense open subset of Pn and fix the hyperplane H = Pn \An

to find a basis of the Picard group of a blowup of Pn and use a special kind of
divisors on a blowup of Pn to measure the height values of P ∈ An. First of
all, we need to clarify how to get such basis of Pic(V ).

Proposition 2.7. Let V be a successive blowup of Pn with a birational mor-
phism π : V → Pn : there are monoidal transformations πi : Vi → Vi−1 such
that Vr = V and V0 = Pn. Let H be a hyperplane on Pn, let Fi be the ex-
ceptional divisor of the blowup πi : Vi → Vi−1, let ρi = πi+1 ◦ · · · ◦ πr and let

Ei = ρ#i Fi. Then, Pic(V ) is a free Z-module with a basis

{HV = π#H,E1, . . . , Er}.

Proof. [3, Exer.II.7.9] shows that

Pic(X̃) ≃ Pic(X)⊕ Z

if π : X̃ → X is a monoidal transformation. More precisely,

Pic(X̃) = {π#D + nE | D ∈ Pic(X)},

where E is the exceptional divisor of π on X̃. Suppose that X = Vi−1 and

X̃ = Vi and get the desired result. □
Now, we define the special kind of divisors, the An-effective divisors.

Definition 2.8. Let V be a successive blowup of Pn with a birational morphism
π : V → Pn, let H be a fixed hyperplane of Pn and let

PicQ(V ) = QHV ⊕QE1 ⊕ · · · ⊕QEr

with the basis described in Proposition 2.7. We define the An-effective cone to
be

AFE(V ) := Q≥0HV ⊕Q≥0E1 ⊕ · · · ⊕Q≥0Er,
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where Q≥0 is the set of nonnegative rational numbers. We say a divisor D of
V is An-effective if the linear equivalence class of D is contained in AFE(V )
and denote it by

D ≻ 0.

Moreover, on PicQ(V ), we write

D1 ≻ D2

if D1 −D2 is An-effective.

The next proposition will explain why we define the “An-effectiveness”.
Namely, the height functions corresponding to An-effective divisors will have
nice properties on An.

Proposition 2.9. Let V be a successive blowup of Pn with a birational mor-
phism π : V → Pn and let D,Di be divisors on V .

(1) (Effectiveness) If D is An-effective, then D is effective.
(2) (Boundedness) If D is An-effective, then hD(P ) is bounded below on

V \ (HV ∪ (
∪r

i=1 Ei)).
(3) (Transitivity) If D1 ≻ D2 and D2 ≻ D3 , then D1 ≻ D3.
(4) (Funtoriality) If ρ : W → V is a monoidal transformation and D1 ≻ D2,

then ρ∗D1 ≻ ρ∗D2.

Proof. See [10, Proposition 3.3]. □

In Section 1, we introduce the main theorem without the definition of the
D-ratio because it requires the An-effectiveness. Now, we are ready to define
the D-ratio, one of main ingredients of this paper.

Definition 2.10. Let f : Pn 99K Pn be a rational map such that I(f) ⊂ H, let
(V, πV ) be a resolution of indeterminacy of f and let ϕV be a resolved morphism
so that the following diagram commutes:

V

πV

��

ϕV

!!C
CC

CC
CC

C

Pn

f
//___ Pn

Suppose that

π∗
V H = a0HV +

r∑
i=1

aiEi and ϕ∗
V H = b0HV +

r∑
i=1

biEi,

where ai, bi are nonnegative integers. If bi ̸= 0 for all i satisfying ai ̸= 0, we
define the D-ratio of ϕV to be

r(ϕV ) = deg ϕV ·max
ai ̸=0

(
ai
bi

)
.
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If there is an index i satisfying ai ̸= 0 and bi = 0, define

r(ϕV ) =∞.

The readers might concern if the D-ratio is only defined for resolved mor-
phisms. The following lemma will allow us to define the D-ratio for the rational
maps.

Lemma 2.11. Let (V, πV ) and (W,πV ) be resolutions of indeterminacy of f
with resolved morphisms ϕV = f ◦ πV and ϕW = f ◦ πW respectively:

W

πW

��

ϕW

!!C
CC

CC
CC

C V

πV

��

ϕV

}}{{
{{
{{
{{

Pn

f
//___ Pn Pn

f
oo_ _ _

Then, we have

r(ϕV ) = r(ϕW ).

Proof. See [10, Lemma 4.3]. □

Definition 2.12. Let f : Pn 99K Pn be a rational map with I(f) ⊂ H. Then,
we define the D-ratio of f to be

r(f) = r(ϕV )

for any resolution of indeterminacy (V, πV ) of f with resolved morphism ϕV .

Proposition 2.13. Let f, g : Pn 99K Pn be rational maps such that I(f), I(g) ⊂
H. Then,

(1) r(f) = 1 if and only if f is a morphism.
(2) r(f) ∈ [1,∞].

(3) r(f)
deg f ·

r(g)
deg g ≥

r(g◦f)
deg(g◦f) .

Proof. See [10, Proposition 4.5, Theorem 5.2]. □

Example 2.14. Let f : An → An be a polynomial automorphism with the
inverse map f−1 : An → An. Then, r(f) = deg f × deg f−1 (For details, see
[9]). For example, a Hénon map

fH(x, y, z) = (z, x+ z2, y + x2)

is a regular polynomial automorphism with the inverse map

f−1
H (x, y, z) = (y − x2, z − (y − x2)2, x).

Thus,

r(fH) = r(f−1
H ) = deg fH × deg f−1

H = 2× 4 = 8.
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Example 2.15. Let f [x, y, z] = [x2, yz, z2]. Then, the indeterminacy locus
of f consists of one point P = [0, 1, 0]. Then, the blowup V along closed
scheme corresponding ideal sheaf (z, x2) will resolve indeterminacy, which is a
successive blowup along P and H# ∩F1, where F1 is the exceptional divisor of
the first blowup.

Let E1 be the proper transformation of F1 and let E2 be the exceptional
divisor of the second blowup:

H#

F1

←
H#

E2

E1

Then, the following intersection numbers are easily calculated:

E2
2 = −1, E2

1 = −2, (H#)2 = −1, H# · E1 = 0 and H# · E2 = E1 · E2 = 1.

Furthermore, by the projection formula and the exact calculation of ϕ∗, we
get

H# · ϕ∗H = ϕ∗H
# ·H = 0,

E1 · ϕ∗H = ϕ∗E1 ·H = 0,

E2 · ϕ∗H = ϕ∗E2 ·H = 1.

Since Pic(V ) = ⟨H#, E1, E2⟩, we may assume that

ϕ∗H = aH# + bE1 + cE2

for some integers a, b and c. Then, by previous facts,

ϕ∗H ·H# = −a+ c = 0, ϕ∗H · E1 = a− 2b = 0.

Therefore,

ϕ∗H = 2H# + E1 + 2E2, π∗H = H# + E1 + 2E2

and hence

r(f) = 2× 1 = 2.

3. Jointly regular families of rational maps

Proof of Theorem 1.4. For notational convenience, let

• dl = deg fl.
• rl = r(fl).
• (Vl, πl) be a resolution of indeterminacy of fl constructed by Theo-
rem 2.5: assume that πl is a composition of monoidal transformations

and {π#
l H = HVl

, El1, . . . , Elsl} is the basis of Pic(Vl) given by Propo-
sition 2.7.
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• ϕl be the resolved morphism of fl on Vl.
•

π∗
l H = a0HVl

+

sl∑
i=1

aliEli and ϕ∗
lH = b0HVl

+

sl∑
i=1

bliEli

in Pic(Vl) = Zπ#
l H ⊕ ZEl1 ⊕ · · · ⊕ ZElsl .

We can easily check that a0 = 1 and b0 = dl from πl∗π
∗
l H = H and

πl∗ϕ
∗
lH = deg ϕl ·H. For details, see [10, Proposition 4.5(2)].

Let Tl be the center scheme of blowup for Vl and let W be the blowup
of Pn whose center scheme is

∑
Tl. Then, W is a blowup of Vl for all l.

Furthermore, since the underlying set of Tl is exactly I(fl), the underlying
set of

∑
Tl = ∪I(fl). Let ρl : W → Vl, πW be a composition of monoidal

transformations:

W

πW

��

ρl

~~}}
}}
}}
}} ρl′

!!B
BB

BB
BB

B
ϕ̃l



ϕ̃l′

��

Vl

ϕl

~~}}
}}
}}
}

πl

  A
AA

AA
AA

Vl′

ϕl′

!!B
BB

BB
BB

πl′

}}||
||
||
|

Pn Pn

fl

oo_ _ _ _ _ _ _
fl′

//_______ Pn

Then, still W is a blowup of Pn and hence Pic(W ) is generated by π#
WH

and the irreducible components Fj of the exceptional divisor:

Pic(W ) = Zπ#
WH ⊕ ZF1 ⊕ · · · ⊕ ZFs.

Thus, we can represent π∗
WH as follows.

π∗
WH = π#

WH +
s∑

j=1

αjFj .

To describe ϕ∗
lH precisely, define

Il = {1 ≤ j ≤ s | πW (Fj) ⊂ I(fl)} and Icl = {1 ≤ j ≤ s | πW (Fj) ̸⊂ I(fl)}.

By definition, it is clear that

Il ∪ Icl = {1, . . . , s} and Il ∩ Icl = ∅.

Thus, we can say

ϕ̃∗
lH = dlπ

#
WH +

s∑
j=1

βljFj = dlπ
#
WH +

∑
j∈Ic

l

βljFj +
∑
j∈Il

βljFj .

We have the following lemmas which clarify the relation between coefficients
of Fj ’s.
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Lemma 3.1.
k∪

l=1

Il =
k∪

l=1

Icl = {1, . . . , s}.

Proof.
∪

l Il = {1, . . . , s} is clear; because the underlying set of the center
scheme of W is ∪I(fl), ∪πW (Fj) = πW (∪Fj) = ∪I(fl).

Suppose
∪

l Icl ⊊ {1, . . . , s}. Then, there is an index l0 satisfying πW (Fl0) ⊂
I(fl) for all l. This implies πW (Fl0) ⊂ I(fl) for all l and hence ∅ ≠ πW (Fl0) ⊂∩

l I(fl) which contradicts to the assumption that S is jointly regular. □

Lemma 3.2. Let αj and βlj be the coefficients of Fj in π∗
V H and ϕ̃∗

lH respec-
tively. Then,

dl
αj

βlj
≤ rl.

Especially, if j ∈ Icl , then
dlαj = βlj .

Proof. By definition of the D-ratio, the first inequality is clear:

rl = dl ·max
i

(
αi

βli

)
≥ dl ·

αj

βlj
.

Now, suppose that

ρ∗l π
#
l H = κl0π

#
WH +

s∑
j=1

κljFj = κljπ
#
WH +

∑
j∈Ic

l

κljFj +
∑
j∈Il

κljFj ,

ρ∗lEli = λli0π
#
WH +

s∑
j=1

λlijFj = λli0π
#
WH +

∑
j∈Ic

l

λlijFj +
∑
j∈Il

λlijFj .

We can easily calculate some of κlj , λlij :

(a) λli0 = 0 for all i = 1, . . . , sl.
Because πW

(
ρ∗lEi

)
⊂ ∪I(fl), we get (πW )∗

(
ρ∗lEi

)
= 0. On the other

hand, πW ∗ eliminates all Fj so that

πW ∗

λli0π
#
WH +

s∑
j=1

λlijFj

 = λli0H.

Hence, λli0 = 0.
(b) κl0 = 1.

We have
πW ∗

(
π∗
WH

)
= H

because πW is one-to-one outside of the center of blowup of W . There-
fore,

πW ∗
(
ρ∗l π

#
l H

)
= πW ∗

π∗
WH −

s∑
j=1

aliρ
∗
lEli

 = H.
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On the other hand, π∗ eliminates all Fj so that

πW ∗

κl0π
#
WH +

s∑
j=1

κljFj

 = κl0H.

Hence, κl0 = 1.
(c) λlij = 0 for all j ∈ Icl .

Because πl(Eli) ⊂ I(fl) and πW (Fj) ̸⊂ I(fl) for any j ∈ Icl , the mul-
tiplicity of ρl(Fj) on El is zero and hence γlij = 0. Thus, we can
say

ρ∗lEli =
∑
j∈Il

λlijFj .

Let’s complete the proof of Lemma 3.2. Since ϕ̃l = ρl ◦ ϕl and πW = ρl ◦ πl,

we can use (a), (b) and (c) to get the description of πW ∗ and ϕ̃∗
lH:

π∗
WH = ρ∗l π

∗
l H

= ρ∗l

(
π#
l H +

sl∑
i=1

aliEli

)

=

κl0π
#
WH +

∑
j∈Il

κljFj +
∑
j∈Ic

l

κljFj


+

sl∑
i=1

ali

λli0π
#
WH +

∑
j∈Ic

l

λlijFj +
∑
j∈Il

λlijFj


=

π#
WH +

∑
j∈Il

κljFj +
∑
j∈Ic

l

κljFj

+

sl∑
i=1

ali

∑
j∈Il

λlijFj


= π#

WH +
∑
j∈Ic

l

κljFj +
∑
j∈Il

(
sl∑
i=0

κlj + aliλlij

)
Fj

and

ϕ̃∗
lH = ρ∗l ϕ

∗
lH

= ρ∗l

(
dlπ

#
l H +

sl∑
i=1

bliEli

)

= dl

κl0π
#
WH +

∑
j∈Il

κljFj +
∑
j∈Ic

l

κljFj


+

sl∑
i=1

bli

λli0π
#
WH +

∑
j∈Ic

l

λlijFj +
∑
j∈Il

λlijFj
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= dl

π#
WH +

∑
j∈Il

κljFj +
∑
j∈Ic

l

κljFj

+

sl∑
i=1

bli

∑
j∈Il

λlijFj


= dlπ

#
WH +

∑
j∈Ic

l

dlκljFj +
∑
j∈Il

(
sl∑
i=0

dlκlj + bliλlij

)
Fj .

Therefore,

dlαj = dl
∑
j∈Ic

l

κlj = βj for all j ∈ Icl .
□

We now complete the proof of Theorem 1.4. Let r = maxl=1,...,k rl. Note
that

p0π
#
WH +

s∑
j=1

pjFj ≻ q0π
#
WH +

s∑
j=1

qjFj

if pj ≥ qj for all j = 0, . . . , s. Thus,

k∑
l=1

1

dl
ϕ̃∗
lH =

k∑
l=1

π#
WH +

∑
j∈Ic

l

(
βlj

dl
Fj

)
+
∑
j∈Il

(
βlj

dl
Fj

)
≻

k∑
l=1

π#
WH +

k∑
l=1

∑
k∈Ic

l

αjFj +
k∑

l=1

∑
j∈Il

αj

rl
Fj

 (∵ Lemma 3.2)

≻ kπ#
WH +

k∑
l=1

∑
j∈Ic

l

αjFj +
k∑

l=1

∑
j∈Il

αj

r
Fj

 (∵ r ≥ rl)

≻ kπ#
WH +

s∑
j=1

αjFj +
1

r

s∑
j=1

αjFj (∵ Lemma 3.1)

≻
(
1 +

1

r

)
π∗
WH (∵ k > 1, r ≥ rl ≥ 1)

and hence

D =
k∑

l=1

1

dl
ϕ̃∗
lH −

(
1 +

1

r

)
π∗
WH

is an An-effective divisor.
So, by Proposition 2.9, hD is bounded below on π−1

W An. Therefore, there is
a constant C such that

hD(Q) =
k∑

l=1

1

dl
hϕ̃∗

l H
(Q)−

(
1 +

1

r

)
hπ∗

WH(Q)

=
k∑

l=1

1

dl
h∗H

(
ϕ̃l(Q)

)
−
(
1 +

1

r

)
hH

(
πW (Q)

)
> C
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for all Q ∈ π−1
W (An)(K). Finally, for P = πW (Q), we have ϕ̃l(Q) = f(P ) and

hence we obtain

k∑
l=1

1

dl
hH(P )−

(
1 +

1

r

)
hH(P ) > C.

□

Example 3.3. Let

f1 = (z, y + z2, x+ (y + z2)2), f2 = (x, y2, z), and f3 = (x3, x+ y, y + z2).

Their indeterminacy loci in P3 are

I(f1) = {[x, y, 0, 0]}, I(f2) = {[x, 0, z, 0]}, and I(f3) = {[0, y, z, 0]}.

Then, the r(f1) = 8, r(f2) = 2 and r(f3) = 3/2 (For details of the D-ratio
calculation, see [10]). Therefore,

h
(
(z, y + z2, x+ (y + z2)2)

)
+ h
(
(x, y2, z)

)
+ h
(
(z3, x+ y, y + z2)

)
≥
(
1 +

1

8

)
h
(
(x, y, z)

)
− C

for some constant C.

Corollary 3.4. Let S be a jointly regular set of affine morphisms. Then,

κ(S) := lim inf
P∈An(Q)
h(P )→∞

∑
f∈S

1

deg f

h
(
f(P )

)
h(P )

≥ 1 +
1

r
,

where r = maxf∈S r(f).

Remark 3.5. Corollary 3.4 may not be the exact limit infimum values. For
example, if there is a subset S′ ⊂ S such that S′ is still jointly regular and
maxf∈S′ r(f) < maxf∈S r(f), then

κ(S) ≥ κ(S′) ≥ 1 +
1

r′
> 1 +

1

r
.

Example 3.6. We have the following examples for κ(S) = 1+minf∈S

(
1

r(f)

)
.

(1) S = {f, g} where f, g are morphisms.
If f, g are morphisms, then r(f) = r(g) = 1. Therefore,

1

deg f
h
(
f(P )

)
+

1

deg g
h
(
g(P )

)
= h(P ) + h(P ) +O(1).

(2) S = {f, f−1} where f is a regular affine automorphism and f−1 is the
inverse of f .
It is proved by Kawaguchi. See [6].



1184 CHONG GYU LEE

4. An application to arithmetic dynamics

The purpose of this section is to prove Theorem 1.5. This result is a gener-
alization of [14, Section 4]. The proof is almost the same except one: the only
difference is that we have an improved height inequality for a jointly regular
family.

Fix an integer m ≥ 1 and let S = {f1, . . . , fk : An
K → An

K} be a jointly
regular family defined over a number field K. For each m ≥ 0, let Wm be the
collection of ordered m-tuples chosen from {1, . . . , k},

Wm =
{
(i1, . . . , im) | ij ∈ {1, . . . , k}

}
and let

W∗ =
∪
m≥0

Wm.

Thus W∗ is the collection of words of r symbols.
For any I = (i1, . . . , im) ∈Wm, let fI denote the composition of correspond-

ing polynomial maps in S:

fI := fi1 ◦ · · · ◦ fim .

Definition 4.1. We denote the monoid of rational maps generated by S =
{f1, . . . , fk} under composition by

ΦS = Φ := {ϕ = fI | I ∈W∗}.

Let P ∈ An. The Φ-orbit of P is defined to be

Φ(P ) = {ϕ(P ) | ϕ ∈ Φ}.

The set of (strongly) Φ-preperiodic points is the set

Preper(Φ) = {P ∈ An | Φ(P ) is finite}.

Proof of Theorem 1.5. By Theorem 1.4, we have a constant C such that

(1) 0 ≤
(

1

1 + 1
r

) k∑
l=1

1

dl
h
(
fl(Q)

)
− h(Q) + C for all Q ∈ An.

Note that if r =∞, then
(

1
1+ 1

r

)
= 1, then it is done because of [14, Theorem 4].

Thus, we may assume that r is finite.
We define a map µ : W∗ → Q by the following rule:

µI = µ(i1,...,im) =
∏

d
pI,l

l ,

where pI,l = −|{t | it = l}|. Then, by definition of δS and µI , the following is
true:

δmS =

[(
r

r + 1

) k∑
l=1

1

dl

]m
=

(
r

r + 1

)m ∑
I∈Wm

1

deg fi1 · · ·deg fim
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=

(
r

r + 1

)m ∑
I∈Wm

µI .

Let P ∈ An(Q). Then, (1) holds for fI(P ) for all I ∈Wm:

0 ≤
(

r

r + 1

) k∑
l=1

1

dl
h
(
fl(fI(P ))

)
− h(fI(P )) + C.

Hence
(2)

0 ≤
M∑

m=0

∑
I∈Wm

µI

(
r

r + 1

)m
[

k∑
l=1

1

dl
h
(
fl(fI(P ))

)
−
(
1 +

1

r

)
h(fI(P )) + C

]
.

The main difficulty of the inequality is to figure out the constant term. From
the definition of δS , we have

M−1∑
m=0

(
r

r + 1

)m ∑
I∈Wm

µI =

M∑
m=1

δmS ≤
1

1− δS
.

Now, do the telescoping sum and most terms in (2) will be canceled:(
M−1∑
m=0

∑
I∈Wm

(
r

r + 1

)m

µI

k∑
l=1

1

dk
h
(
flfI(P )

))

−

(
M∑

m=1

∑
I∈Wm

(
r

r + 1

)m−1

µIh
(
fI(P )

))

=

(
M−1∑
m=0

∑
I∈Wm

(
r

r + 1

)m k∑
l=1

µI

dl
h
(
flfI(P )

))

−

(
M−1∑
m=0

∑
I∈Wm

k∑
l=1

(
r

r + 1

)m
µI

dl
h
(
flfI(P )

))
= 0.

Therefore, the remaining terms in (2) are the first term when m = M and the
last term when m = 0. Thus, we get

0 ≤

[ ∑
I∈WM

(
r

r + 1

)M

µI

K∑
l=1

1

dl
h
(
fl(fI(P ))

)]
− h(P ) +

∑
I∈WM

(
r

r + 1

)M

µIC

≤

[ ∑
I∈WM

(
r

r + 1

)M

µI

k∑
l=1

1

dl
h
(
fl(fI(P ))

)]
− h(P ) +

1

1− δS
C.

Let P be a Φ-periodic point and define the height of the images of P by the
monoid Φ to be

h(Φ(P )) = sup
R∈Φ(P )

h(R).
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Since∑
I∈WM

(
r

r + 1

)M

µI

k∑
l=1

1

dl
=

(
r

r + 1

)M ∑
I∈WM+1

µI =

(
1 +

1

r

)
δM+1
S

and

h(Φ(P )) ≥ h
(
g(P )

)
for all g ∈ Φ,

we get

h(P ) ≤

[ ∑
I∈WM

(
r

r + 1

)M

µI

k∑
l=1

1

dl

]
h
(
Φ(P )

)
+

1

1− δS
C

≤
(
1 +

1

r

)
δM+1
S h

(
Φ(P )

)
+

1

1− δS
C.

By assumption, δS < 1 and h
(
Φ(P )

)
is finite, so letting M → ∞ shows that

h(P ) is bounded by a constant that depends only on S. □
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