• 제목/요약/키워드: P-prime ideal

검색결과 78건 처리시간 0.027초

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • 제18권2호
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF

PRIME RADICALS OF SKEW LAURENT POLYNOMIAL RINGS

  • Han, Jun-Cheol
    • 대한수학회보
    • /
    • 제42권3호
    • /
    • pp.477-484
    • /
    • 2005
  • Let R be a ring with an automorphism 17. An ideal [ of R is ($\sigma$-ideal of R if $\sigma$(I).= I. A proper ideal P of R is ($\sigma$-prime ideal of R if P is a $\sigma$-ideal of R and for $\sigma$-ideals I and J of R, IJ $\subseteq$ P implies that I $\subseteq$ P or J $\subseteq$ P. A proper ideal Q of R is $\sigma$-semiprime ideal of Q if Q is a $\sigma$-ideal and for a $\sigma$-ideal I of R, I$^{2}$ $\subseteq$ Q implies that I $\subseteq$ Q. The $\sigma$-prime radical is defined by the intersection of all $\sigma$-prime ideals of R and is denoted by P$_{(R). In this paper, the following results are obtained: (1) For a principal ideal domain R, P$_{(R) is the smallest $\sigma$-semiprime ideal of R; (2) For any ring R with an automorphism $\sigma$ and for a skew Laurent polynomial ring R[x, x$^{-1}$; $\sigma$], the prime radical of R[x, x$^{-1}$; $\sigma$] is equal to P$_{(R)[x, x$^{-1}$; $\sigma$ ].

WEAKLY PRIME LEFT IDEALS IN NEAR-SUBTRACTION SEMIGROUPS

  • Dheena, P.;Kumar, G. Satheesh
    • 대한수학회논문집
    • /
    • 제23권3호
    • /
    • pp.325-331
    • /
    • 2008
  • In this paper we introduce the notion of weakly prime left ideals in near-subtraction semigroups. Equivalent conditions for a left ideal to be weakly prime are obtained. We have also shown that if (M, L) is a weak $m^*$-system and if P is a left ideal which is maximal with respect to containing L and not meeting M, then P is weakly prime.

ON PSEUDO 2-PRIME IDEALS AND ALMOST VALUATION DOMAINS

  • Koc, Suat
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.897-908
    • /
    • 2021
  • In this paper, we introduce the notion of pseudo 2-prime ideals in commutative rings. Let R be a commutative ring with a nonzero identity. A proper ideal P of R is said to be a pseudo 2-prime ideal if whenever xy ∈ P for some x, y ∈ R, then x2n ∈ Pn or y2n ∈ Pn for some n ∈ ℕ. Various examples and properties of pseudo 2-prime ideals are given. We also characterize pseudo 2-prime ideals of PID's and von Neumann regular rings. Finally, we use pseudo 2-prime ideals to characterize almost valuation domains (AV-domains).

1-(2-) Prime Ideals in Semirings

  • Nandakumar, Pandarinathan
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.117-122
    • /
    • 2010
  • In this paper, we introduce the concepts of 1-prime ideals and 2-prime ideals in semirings. We have also introduced $m_1$-system and $m_2$-system in semiring. We have shown that if Q is an ideal in the semiring R and if M is an $m_2$-system of R such that $\overline{Q}{\bigcap}M={\emptyset}$ then there exists as 2-prime ideal P of R such that Q $\subseteq$ P with $P{\bigcap}M={\emptyset}$.

zJ-Ideals and Strongly Prime Ideals in Posets

  • John, Catherine Grace;Elavarasan, Balasubramanian
    • Kyungpook Mathematical Journal
    • /
    • 제57권3호
    • /
    • pp.385-391
    • /
    • 2017
  • In this paper, we study the notion of $z^J$ - ideals of posets and explore the various properties of $z^J$-ideals in posets. The relations between topological space on Sspec(P), the set $I_Q=\{x{\in}P:L(x,y){\subseteq}I\text{ for some }y{\in}P{\backslash}Q\}$ for an ideal I and a strongly prime ideal Q of P and $z^J$-ideals are discussed in poset P.

WEAKLY PRIME IDEALS IN COMMUTATIVE SEMIGROUPS

  • Anderson, D.D.;Chun, Sangmin;Juett, Jason R.
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.829-839
    • /
    • 2019
  • Let S be a commutative semigroup with 0 and 1. A proper ideal P of S is weakly prime if for $a,\;b{\in}S$, $0{\neq}ab{\in}P$ implies $a{\in}P$ or $b{\in}P$. We investigate weakly prime ideals and related ideals of S. We also relate weakly prime principal ideals to unique factorization in commutative semigroups.

Strongly Prime Ideals and Primal Ideals in Posets

  • John, Catherine Grace;Elavarasan, Balasubramanian
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.727-735
    • /
    • 2016
  • In this paper, we study and establish some interesting results of ideals in a poset. It is shown that for a nonzero ideal I of a poset P, there are at most two strongly prime ideals of P that are minimal over I. Also, we study the notion of primal ideals in a poset and the relationship among the primal ideals and strongly prime ideals is considered.

A GENERALIZATION OF THE PRIME RADICAL OF IDEALS IN COMMUTATIVE RINGS

  • Harehdashti, Javad Bagheri;Moghimi, Hosein Fazaeli
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.543-552
    • /
    • 2017
  • Let R be a commutative ring with identity, and ${\phi}:{\mathfrak{I}}(R){\rightarrow}{\mathfrak{I}}(R){\cup}\{{\varnothing}\}$ be a function where ${\mathfrak{I}}(R)$ is the set of all ideals of R. Following [2], a proper ideal P of R is called a ${\phi}$-prime ideal if $x,y{\in}R$ with $xy{\in}P-{\phi}(P)$ implies $x{\in}P$ or $y{\in}P$. For an ideal I of R, we define the ${\phi}$-radical ${\sqrt[{\phi}]{I}}$ to be the intersection of all ${\phi}$-prime ideals of R containing I, and show that this notion inherits most of the essential properties of the usual notion of radical of an ideal. We also investigate when the set of all ${\phi}$-prime ideals of R, denoted $Spec_{\phi}(R)$, has a Zariski topology analogous to that of the prime spectrum Spec(R), and show that this topological space is Noetherian if and only if ${\phi}$-radical ideals of R satisfy the ascending chain condition.

A NOTE ON MINIMAL PRIME IDEALS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • 대한수학회보
    • /
    • 제54권4호
    • /
    • pp.1281-1291
    • /
    • 2017
  • Let R be a strongly 2-primal ring and I a proper ideal of R. Then there are only finitely many prime ideals minimal over I if and only if for every prime ideal P minimal over I, the ideal $P/{\sqrt{I}}$ of $R/{\sqrt{I}}$ is finitely generated if and only if the ring $R/{\sqrt{I}}$ satisfies the ACC on right annihilators. This result extends "D. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), no. 1, 13-14." to large classes of noncommutative rings. It is also shown that, a 2-primal ring R only has finitely many minimal prime ideals if each minimal prime ideal of R is finitely generated. Examples are provided to illustrate our results.